Checking Causal Inference on Synthetic Data
The program for testing causal-inference methods on synthetic data is located in - H:\MR\Projects\Shared\CausalEffects\CausalEffectsUtils\check_toy_model The program parameters are :
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
Method-Name | True-ITE | Estimated-ITE |
---|
The true ITE is either generated from the generative model (if given, in .bin and .treatment.bin) or read from file (**) Methods currently implemented are:
Method | Description | Comment |
---|---|---|
do_true |
true ITE from generative models | |
do_direct | Learn a regression model to directly evaluate ITE on trainMatrix and apply on validationMatrix | This is a debugging method as it assumes true ITE is known for the trainMatrix |
do_model | Learn a naive model ƒ(x,T)→y , and evaluate ITE = ƒ(x,1) - ƒ(x,0) | |
do_nn_model | Same as do_model but using external learning/predictions scripts for model | Allows interfacing with TensorFlow |
do_two_models | Learn two modelsƒT=1(x)→y and ƒT=0(x)→y and evaluate ITE = ƒT=1(x) - ƒT=0(x) | |
do_weighted | Use Inverse Propensity Weighting (IPW) to learn ƒ(x,T)→y , and evaluate ITE = ƒ(x,1) - ƒ(x,0) | |
do_weighted_nn_model | Same as do_weighted but using external learning/predictions scripts for model | Allows interfacing with TensorFlow |
do_g_comp | Use "G-Computation" - create counter-factuals using a model, and then use them for learning a second model. |
IPW optional for first model |
do_two_models_g_comp | A combination of do_g_comp & do_two_models | |
do_quasi_oracle |
Evalute ITE using Quasi-Oracle - e* and m* evaluated internally and ITE using an external script | ITE is evaluated using an external script to allow using TensorFlow NN |
do_nn_quasi_oracle |
Evalute ITE using Quasi-Oracle - e* and m* also evaluated using external scripts | Allows interfacing with TensorFlow on all stages |
do_oracle | Similar to Quasi-Oracle, only using true e and m instead of estimated e* and m* | his is a debugging method as it assumes true e and m are known |
do_external | Import ITE from file and generate out file | |
do_external_predictor | Read a MedPredictor object and apply on validationMatrix to generate ITE | |
do_external_script | Apply an external script to generate ITE on validationMatrix | |
do_cfr | Apply Uri Shalit's CounterFactual Regression Methods | Use downloaded scripts |
do_shap | Use Shapley of naive model ƒ(x,T)→y values as estimators for ITE | |
do_ipw_shap | Use Shapley of IPW-learned model ƒ(x,T)→y values as estimators for ITE |