Skip to content

PostProcessors Practical Guide

PostProcessors are processors which occours after predicitons. Full PostProcessor code doc: https://Medial-EarlySign.github.io/MR_LIBS/classPostProcessor.html Some PostProcessor, for full list of types and json values to put in names please reffer to PostProcessor_Types. ·          We have now MultiPostProcessor (for parallelism) ·          Calibrator – to calibrate scores to probabilities for example ·          ModelExplainer – Several options for ButWhy:   PostProcessor API:   ModelExplainer API:   Examples:

  • Calibration
  • Explainer of prediction "But Why"   Example for calibration:
    1
    2
    3
    4
    5
    6
    7
    8
    9
    {
          "action_type":"post_processor",
          "pp_type":"calibrator",
          "calibration_type":"binning",
          "min_preds_in_bin":"200",
          "min_prob_res":"0.005",
          //"calibration_samples":"", //on train or give your samples to calibrate on
          "verbose":"1"
    }
    
    Example for explainer:   Tree Shapley:
    1
    2
    3
    4
    5
    6
    {
          "action_type":"post_processor",
          "pp_type":"tree_shap",
          "approximate":"0",
          "interaction_shap":"0"
    }
    
    LIME:
    1
    2
    3
    4
    5
    6
    7
    8
    9
    {
          "action_type":"post_processor",
          "pp_type":"lime_shap",
          //"pp_type":"shapley",
          "gen_type":"GIBBS",
          "n_masks":"500", //how many masks to sample for learn
          "generator_args":"{kmeans=0;select_with_repeats=0;max_iters=0;predictor_type=qrf;predictor_args={spread=0;type=categorial_entropy;learn_nthreads=40;predict_nthreads=40;ntrees=50;maxq=500;min_node=300;get_only_this_categ=-1};num_class_setup=n_categ;bin_settings={split_method=iterative_merge;min_bin_count=500;binCnt=150};selection_ratio=1.0}", //when using Gibbs, otherwise give GAN path here
          "sampling_args":"{burn_in_count=50;jump_between_samples=10;samples_count=1;find_real_value_bin=1;use_cache=0}" //in GAN not needed
    }