Medial Code Documentation
Loading...
Searching...
No Matches
Namespaces | Data Structures | Typedefs | Enumerations | Functions | Variables
Eigen Namespace Reference

Namespace containing all symbols from the Eigen library. More...

Namespaces

namespace  indexing
 The sole purpose of this namespace is to be able to import all functions and symbols that are expected to be used within operator() for indexing and slicing.
 
namespace  symbolic
 This namespace defines a set of classes and functions to build and evaluate symbolic expressions of scalar type Index.
 

Data Structures

class  aligned_allocator
 STL compatible allocator to use with types requiring a non standrad alignment. More...
 
class  aligned_allocator_indirection
 
class  AlignedBox
 \geometry_module More...
 
class  AMDOrdering
 Functor computing the approximate minimum degree ordering If the matrix is not structurally symmetric, an ordering of A^T+A is computed. More...
 
class  AngleAxis
 \geometry_module More...
 
class  ArithmeticSequence
 This class represents an arithmetic progression $ a_0, a_1, a_2, ..., a_{n-1}$ defined by its first value $ a_0 $, its size (aka length) n, and the increment (aka stride) that is equal to $ a_{i+1}-a_{i}$ for any i. More...
 
class  Array
 General-purpose arrays with easy API for coefficient-wise operations. More...
 
class  ArrayBase
 Base class for all 1D and 2D array, and related expressions. More...
 
class  ArrayWrapper
 Expression of a mathematical vector or matrix as an array object. More...
 
struct  ArrayXpr
 The type used to identify an array expression. More...
 
struct  BandShape
 
class  BDCSVD
 class Bidiagonal Divide and Conquer SVD More...
 
struct  bfloat16
 
class  BiCGSTAB
 A bi conjugate gradient stabilized solver for sparse square problems. More...
 
class  Block
 Expression of a fixed-size or dynamic-size block. More...
 
class  BlockImpl
 
class  BlockImpl< const SparseMatrix< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols, true, Sparse >
 
class  BlockImpl< SparseMatrix< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols, true, Sparse >
 
class  BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Dense >
 
class  BlockImpl< XprType, BlockRows, BlockCols, InnerPanel, Sparse >
 Generic implementation of sparse Block expression. More...
 
class  BlockImpl< XprType, BlockRows, BlockCols, true, Sparse >
 
class  CholmodBase
 The base class for the direct Cholesky factorization of Cholmod. More...
 
class  CholmodDecomposition
 A general Cholesky factorization and solver based on Cholmod. More...
 
class  CholmodSimplicialLDLT
 A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod. More...
 
class  CholmodSimplicialLLT
 A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod. More...
 
class  CholmodSupernodalLLT
 A supernodal Cholesky (LLT) factorization and solver based on Cholmod. More...
 
class  COLAMDOrdering
 
class  ColPivHouseholderQR
 Householder rank-revealing QR decomposition of a matrix with column-pivoting. More...
 
class  CommaInitializer
 Helper class used by the comma initializer operator. More...
 
class  CompleteOrthogonalDecomposition
 Complete orthogonal decomposition (COD) of a matrix. More...
 
class  ComplexEigenSolver
 \eigenvalues_module More...
 
class  ComplexSchur
 \eigenvalues_module More...
 
class  Conjugate
 
class  ConjugateGradient
 A conjugate gradient solver for sparse (or dense) self-adjoint problems. More...
 
class  Cross
 
class  CwiseBinaryOp
 Generic expression where a coefficient-wise binary operator is applied to two expressions. More...
 
class  CwiseBinaryOpImpl
 
class  CwiseBinaryOpImpl< BinaryOp, Lhs, Rhs, Sparse >
 
class  CwiseNullaryOp
 Generic expression of a matrix where all coefficients are defined by a functor. More...
 
class  CwiseTernaryOp
 Generic expression where a coefficient-wise ternary operator is applied to two expressions. More...
 
class  CwiseTernaryOpImpl
 
class  CwiseUnaryOp
 Generic expression where a coefficient-wise unary operator is applied to an expression. More...
 
class  CwiseUnaryOpImpl
 
class  CwiseUnaryView
 Generic lvalue expression of a coefficient-wise unary operator of a matrix or a vector. More...
 
class  CwiseUnaryViewImpl
 
class  CwiseUnaryViewImpl< ViewOp, MatrixType, Dense >
 
struct  Dense
 The type used to identify a dense storage. More...
 
class  DenseBase
 Base class for all dense matrices, vectors, and arrays. More...
 
class  DenseCoeffsBase
 
class  DenseCoeffsBase< Derived, DirectAccessors >
 Base class providing direct read-only coefficient access to matrices and arrays. More...
 
class  DenseCoeffsBase< Derived, DirectWriteAccessors >
 Base class providing direct read/write coefficient access to matrices and arrays. More...
 
class  DenseCoeffsBase< Derived, ReadOnlyAccessors >
 Base class providing read-only coefficient access to matrices and arrays. More...
 
class  DenseCoeffsBase< Derived, WriteAccessors >
 Base class providing read/write coefficient access to matrices and arrays. More...
 
struct  DenseShape
 
struct  DenseSparseProductReturnType
 
class  DenseStorage
 
class  DenseStorage< T, 0, _Rows, _Cols, _Options >
 
class  DenseStorage< T, 0, _Rows, Dynamic, _Options >
 
class  DenseStorage< T, 0, Dynamic, _Cols, _Options >
 
class  DenseStorage< T, 0, Dynamic, Dynamic, _Options >
 
class  DenseStorage< T, Dynamic, _Rows, Dynamic, _Options >
 
class  DenseStorage< T, Dynamic, Dynamic, _Cols, _Options >
 
class  DenseStorage< T, Dynamic, Dynamic, Dynamic, _Options >
 
class  DenseStorage< T, Size, _Rows, Dynamic, _Options >
 
class  DenseStorage< T, Size, Dynamic, _Cols, _Options >
 
class  DenseStorage< T, Size, Dynamic, Dynamic, _Options >
 
class  DenseTimeSparseProduct
 
class  Diagonal
 Expression of a diagonal/subdiagonal/superdiagonal in a matrix. More...
 
class  DiagonalBase
 
class  DiagonalMatrix
 Represents a diagonal matrix with its storage. More...
 
class  DiagonalPreconditioner
 A preconditioner based on the digonal entries. More...
 
class  DiagonalProduct
 
struct  DiagonalShape
 
class  DiagonalWrapper
 Expression of a diagonal matrix. More...
 
class  DynamicSparseMatrix
 
class  EigenBase
 Common base class for all classes T such that MatrixBase has an operator=(T) and a constructor MatrixBase(T). More...
 
class  EigenSolver
 \eigenvalues_module More...
 
class  Flagged
 
class  ForceAlignedAccess
 Enforce aligned packet loads and stores regardless of what is requested. More...
 
class  FullPivHouseholderQR
 Householder rank-revealing QR decomposition of a matrix with full pivoting. More...
 
class  FullPivLU
 LU decomposition of a matrix with complete pivoting, and related features. More...
 
struct  general_product_to_triangular_selector
 
struct  general_product_to_triangular_selector< MatrixType, ProductType, UpLo, false >
 
struct  general_product_to_triangular_selector< MatrixType, ProductType, UpLo, true >
 
class  GeneralizedEigenSolver
 \eigenvalues_module More...
 
class  GeneralizedSelfAdjointEigenSolver
 \eigenvalues_module More...
 
struct  GenericNumTraits
 
struct  half
 
class  HessenbergDecomposition
 \eigenvalues_module More...
 
class  Homogeneous
 \geometry_module More...
 
struct  HomogeneousShape
 
class  HouseholderQR
 Householder QR decomposition of a matrix. More...
 
class  HouseholderSequence
 \householder_module More...
 
class  Hyperplane
 \geometry_module More...
 
class  IdentityPreconditioner
 A naive preconditioner which approximates any matrix as the identity matrix. More...
 
class  IncompleteCholesky
 Modified Incomplete Cholesky with dual threshold. More...
 
class  IncompleteLUT
 Incomplete LU factorization with dual-threshold strategy. More...
 
class  IndexedView
 Expression of a non-sequential sub-matrix defined by arbitrary sequences of row and column indices. More...
 
class  IndexedViewImpl
 
class  InnerIterator
 An InnerIterator allows to loop over the element of any matrix expression. More...
 
class  InnerStride
 Convenience specialization of Stride to specify only an inner stride See class Map for some examples. More...
 
class  Inverse
 Expression of the inverse of another expression. More...
 
class  InverseImpl
 
class  InverseImpl< PermutationType, PermutationStorage >
 
class  IOFormat
 Stores a set of parameters controlling the way matrices are printed. More...
 
class  IterativeSolverBase
 Base class for linear iterative solvers. More...
 
class  JacobiRotation
 \jacobi_module More...
 
class  JacobiSVD
 Two-sided Jacobi SVD decomposition of a rectangular matrix. More...
 
class  KLU
 
struct  LazyProductReturnType
 
class  LDLT
 Robust Cholesky decomposition of a matrix with pivoting. More...
 
class  LeastSquareDiagonalPreconditioner
 Jacobi preconditioner for LeastSquaresConjugateGradient. More...
 
class  LeastSquaresConjugateGradient
 A conjugate gradient solver for sparse (or dense) least-square problems. More...
 
class  LLT
 Standard Cholesky decomposition (LL^T) of a matrix and associated features. More...
 
class  Map
 A matrix or vector expression mapping an existing array of data. More...
 
class  Map< const Quaternion< _Scalar >, _Options >
 Quaternion expression mapping a constant memory buffer. More...
 
class  Map< const SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Map< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex >, _PacketAccess >
 
class  Map< Quaternion< _Scalar >, _Options >
 Expression of a quaternion from a memory buffer. More...
 
class  Map< SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 Specialization of class Map for SparseMatrix-like storage. More...
 
class  Map< Transpositions< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex >, PacketAccess >
 
class  MapBase
 
class  MapBase< Derived, ReadOnlyAccessors >
 Base class for dense Map and Block expression with direct access. More...
 
class  MapBase< Derived, WriteAccessors >
 Base class for non-const dense Map and Block expression with direct access. More...
 
class  MappedSparseMatrix
 Sparse matrix. More...
 
class  Matrix
 The matrix class, also used for vectors and row-vectors. More...
 
class  MatrixBase
 Base class for all dense matrices, vectors, and expressions. More...
 
class  MatrixComplexPowerReturnValue
 
struct  MatrixExponentialReturnValue
 
class  MatrixFunctionReturnValue
 
class  MatrixLogarithmReturnValue
 
class  MatrixPowerReturnValue
 
class  MatrixSquareRootReturnValue
 
class  MatrixWrapper
 Expression of an array as a mathematical vector or matrix. More...
 
struct  MatrixXpr
 The type used to identify a matrix expression. More...
 
class  MetisOrdering
 Get the fill-reducing ordering from the METIS package. More...
 
class  NaturalOrdering
 Functor computing the natural ordering (identity) More...
 
class  NestByValue
 Expression which must be nested by value. More...
 
class  NoAlias
 Pseudo expression providing an operator = assuming no aliasing. More...
 
class  NumTraits
 Holds information about the various numeric (i.e. More...
 
struct  NumTraits< Array< Scalar, Rows, Cols, Options, MaxRows, MaxCols > >
 
struct  NumTraits< bool >
 
struct  NumTraits< double >
 
struct  NumTraits< Eigen::bfloat16 >
 
struct  NumTraits< Eigen::half >
 
struct  NumTraits< float >
 
struct  NumTraits< long double >
 
struct  NumTraits< std::complex< _Real > >
 
struct  NumTraits< std::string >
 
struct  NumTraits< void >
 
class  OuterStride
 Convenience specialization of Stride to specify only an outer stride See class Map for some examples. More...
 
class  ParametrizedLine
 \geometry_module More...
 
class  PardisoImpl
 
class  PardisoLDLT
 A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library. More...
 
class  PardisoLLT
 A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library. More...
 
class  PardisoLU
 A sparse direct LU factorization and solver based on the PARDISO library. More...
 
struct  partial_redux_dummy_func
 
class  PartialPivLU
 LU decomposition of a matrix with partial pivoting, and related features. More...
 
class  PartialReduxExpr
 Generic expression of a partially reduxed matrix. More...
 
class  PastixBase
 
class  PastixLDLT
 A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library. More...
 
class  PastixLLT
 A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library. More...
 
class  PastixLU
 Interface to the PaStix solver. More...
 
class  PermutationBase
 Base class for permutations. More...
 
class  PermutationMatrix
 Permutation matrix. More...
 
struct  PermutationShape
 
struct  PermutationStorage
 The type used to identify a permutation storage. More...
 
class  PermutationWrapper
 Class to view a vector of integers as a permutation matrix. More...
 
class  PlainObjectBase
 
class  Product
 Expression of the product of two arbitrary matrices or vectors. More...
 
class  ProductImpl
 
class  ProductImpl< Lhs, Rhs, Option, Dense >
 
struct  ProductReturnType
 
class  Quaternion
 \geometry_module More...
 
class  QuaternionBase
 \geometry_module More...
 
class  RealQZ
 \eigenvalues_module More...
 
class  RealSchur
 \eigenvalues_module More...
 
class  Ref
 A matrix or vector expression mapping an existing expression. More...
 
class  Ref< const SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Ref< const SparseVector< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 
class  Ref< const TPlainObjectType, Options, StrideType >
 
class  Ref< SparseMatrix< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 A sparse matrix expression referencing an existing sparse expression. More...
 
class  Ref< SparseVector< MatScalar, MatOptions, MatIndex >, Options, StrideType >
 A sparse vector expression referencing an existing sparse vector expression. More...
 
class  RefBase
 
class  Replicate
 Expression of the multiple replication of a matrix or vector. More...
 
class  Reshaped
 Expression of a fixed-size or dynamic-size reshape. More...
 
class  ReshapedImpl
 
class  ReshapedImpl< XprType, Rows, Cols, Order, Dense >
 
class  ReturnByValue
 
class  Reverse
 Expression of the reverse of a vector or matrix. More...
 
class  Rotation2D
 \geometry_module More...
 
class  RotationBase
 Common base class for compact rotation representations. More...
 
class  ScalarBinaryOpTraits
 Determines whether the given binary operation of two numeric types is allowed and what the scalar return type is. More...
 
struct  ScalarBinaryOpTraits< T, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< T, typename NumTraits< typename internal::enable_if< NumTraits< T >::IsComplex, T >::type >::Real, BinaryOp >
 
struct  ScalarBinaryOpTraits< T, void, BinaryOp >
 
struct  ScalarBinaryOpTraits< typename NumTraits< typename internal::enable_if< NumTraits< T >::IsComplex, T >::type >::Real, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< void, T, BinaryOp >
 
struct  ScalarBinaryOpTraits< void, void, BinaryOp >
 
class  Select
 Expression of a coefficient wise version of the C++ ternary operator ?: More...
 
struct  selfadjoint_product_selector
 
struct  selfadjoint_product_selector< MatrixType, OtherType, UpLo, false >
 
struct  selfadjoint_product_selector< MatrixType, OtherType, UpLo, true >
 
struct  selfadjoint_rank1_update
 
struct  selfadjoint_rank1_update< Scalar, Index, ColMajor, UpLo, ConjLhs, ConjRhs >
 
struct  selfadjoint_rank1_update< Scalar, Index, RowMajor, UpLo, ConjLhs, ConjRhs >
 
class  SelfAdjointEigenSolver
 \eigenvalues_module More...
 
struct  SelfAdjointShape
 
class  SelfAdjointView
 Expression of a selfadjoint matrix from a triangular part of a dense matrix. More...
 
class  SimplicialCholesky
 
class  SimplicialCholeskyBase
 A base class for direct sparse Cholesky factorizations. More...
 
class  SimplicialLDLT
 A direct sparse LDLT Cholesky factorizations without square root. More...
 
class  SimplicialLLT
 A direct sparse LLT Cholesky factorizations. More...
 
struct  SluMatrix
 
struct  SluMatrixMapHelper
 
struct  SluMatrixMapHelper< Matrix< Scalar, Rows, Cols, Options, MRows, MCols > >
 
struct  SluMatrixMapHelper< SparseMatrixBase< Derived > >
 
class  Solve
 Pseudo expression representing a solving operation. More...
 
class  SolveImpl
 
class  SolveImpl< Decomposition, RhsType, Dense >
 
class  SolverBase
 A base class for matrix decomposition and solvers. More...
 
struct  SolverShape
 
struct  SolverStorage
 The type used to identify a general solver (factored) storage. More...
 
class  SolveWithGuess
 Pseudo expression representing a solving operation. More...
 
struct  Sparse
 The type used to identify a general sparse storage. More...
 
class  SparseCompressedBase
 Common base class for sparse [compressed]-{row|column}-storage format. More...
 
class  SparseDenseOuterProduct
 
struct  SparseDenseProductReturnType
 
class  SparseDiagonalProduct
 
class  SparseLU
 Sparse supernodal LU factorization for general matrices. More...
 
struct  SparseLUMatrixLReturnType
 
struct  SparseLUMatrixUReturnType
 
class  SparseLUTransposeView
 
class  SparseMapBase
 
class  SparseMapBase< Derived, ReadOnlyAccessors >
 class SparseMapBase More...
 
class  SparseMapBase< Derived, WriteAccessors >
 class SparseMapBase More...
 
class  SparseMatrix
 A versatible sparse matrix representation. More...
 
class  SparseMatrixBase
 Base class of any sparse matrices or sparse expressions. More...
 
class  SparseQR
 Sparse left-looking QR factorization with numerical column pivoting. More...
 
struct  SparseQR_QProduct
 
struct  SparseQRMatrixQReturnType
 
struct  SparseQRMatrixQTransposeReturnType
 
class  SparseSelfAdjointView
 Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. More...
 
struct  SparseShape
 
class  SparseSolverBase
 A base class for sparse solvers. More...
 
class  SparseSparseProduct
 
struct  SparseSparseProductReturnType
 
class  SparseSymmetricPermutationProduct
 
class  SparseTimeDenseProduct
 
class  SparseVector
 a sparse vector class More...
 
class  SparseView
 Expression of a dense or sparse matrix with zero or too small values removed. More...
 
class  SPQR
 Sparse QR factorization based on SuiteSparseQR library. More...
 
struct  SPQR_QProduct
 
struct  SPQRMatrixQReturnType
 
struct  SPQRMatrixQTransposeReturnType
 
class  Stride
 Holds strides information for Map. More...
 
class  SuperLU
 A sparse direct LU factorization and solver based on the SuperLU library. More...
 
class  SuperLUBase
 The base class for the direct and incomplete LU factorization of SuperLU. More...
 
class  SVDBase
 Base class of SVD algorithms. More...
 
class  SwapWrapper
 
class  Transform
 \geometry_module More...
 
class  Translation
 \geometry_module More...
 
class  Transpose
 Expression of the transpose of a matrix. More...
 
class  Transpose< TranspositionsBase< TranspositionsDerived > >
 
class  TransposeImpl
 
class  TransposeImpl< MatrixType, Dense >
 
class  TransposeImpl< MatrixType, Sparse >
 
class  Transpositions
 Represents a sequence of transpositions (row/column interchange) More...
 
class  TranspositionsBase
 
struct  TranspositionsShape
 
struct  TranspositionsStorage
 The type used to identify a permutation storage. More...
 
class  TranspositionsWrapper
 
class  TriangularBase
 Base class for triangular part in a matrix. More...
 
struct  TriangularShape
 
class  TriangularView
 Expression of a triangular part in a matrix. More...
 
class  TriangularViewImpl
 
class  TriangularViewImpl< _MatrixType, _Mode, Dense >
 Base class for a triangular part in a dense matrix. More...
 
class  TriangularViewImpl< MatrixType, Mode, Sparse >
 Base class for a triangular part in a sparse matrix. More...
 
class  Tridiagonalization
 \eigenvalues_module More...
 
class  Triplet
 A small structure to hold a non zero as a triplet (i,j,value). More...
 
class  UmfPackLU
 A sparse LU factorization and solver based on UmfPack. More...
 
class  UniformScaling
 \geometry_module More...
 
class  VectorBlock
 Expression of a fixed-size or dynamic-size sub-vector. More...
 
class  VectorwiseOp
 Pseudo expression providing broadcasting and partial reduction operations. More...
 
class  WithFormat
 Pseudo expression providing matrix output with given format. More...
 

Typedefs

typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex
 
typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
 The Index type as used for the API.
 
typedef std::complex< doubledcomplex
 
typedef std::complex< float > scomplex
 
typedef int BlasIndex
 
typedef AngleAxis< float > AngleAxisf
 single precision angle-axis type
 
typedef AngleAxis< doubleAngleAxisd
 double precision angle-axis type
 
typedef Quaternion< float > Quaternionf
 single precision quaternion type
 
typedef Quaternion< doubleQuaterniond
 double precision quaternion type
 
typedef Map< Quaternion< float >, 0 > QuaternionMapf
 Map an unaligned array of single precision scalars as a quaternion.
 
typedef Map< Quaternion< double >, 0 > QuaternionMapd
 Map an unaligned array of double precision scalars as a quaternion.
 
typedef Map< Quaternion< float >, Aligned > QuaternionMapAlignedf
 Map a 16-byte aligned array of single precision scalars as a quaternion.
 
typedef Map< Quaternion< double >, Aligned > QuaternionMapAlignedd
 Map a 16-byte aligned array of double precision scalars as a quaternion.
 
typedef Rotation2D< float > Rotation2Df
 single precision 2D rotation type
 
typedef Rotation2D< doubleRotation2Dd
 double precision 2D rotation type
 
typedef DiagonalMatrix< float, 2 > AlignedScaling2f
 
typedef DiagonalMatrix< double, 2 > AlignedScaling2d
 
typedef DiagonalMatrix< float, 3 > AlignedScaling3f
 
typedef DiagonalMatrix< double, 3 > AlignedScaling3d
 
typedef Transform< float, 2, Isometry > Isometry2f
 
typedef Transform< float, 3, Isometry > Isometry3f
 
typedef Transform< double, 2, Isometry > Isometry2d
 
typedef Transform< double, 3, Isometry > Isometry3d
 
typedef Transform< float, 2, Affine > Affine2f
 
typedef Transform< float, 3, Affine > Affine3f
 
typedef Transform< double, 2, Affine > Affine2d
 
typedef Transform< double, 3, Affine > Affine3d
 
typedef Transform< float, 2, AffineCompact > AffineCompact2f
 
typedef Transform< float, 3, AffineCompact > AffineCompact3f
 
typedef Transform< double, 2, AffineCompact > AffineCompact2d
 
typedef Transform< double, 3, AffineCompact > AffineCompact3d
 
typedef Transform< float, 2, Projective > Projective2f
 
typedef Transform< float, 3, Projective > Projective3f
 
typedef Transform< double, 2, Projective > Projective2d
 
typedef Transform< double, 3, Projective > Projective3d
 
typedef Translation< float, 2 > Translation2f
 
typedef Translation< double, 2 > Translation2d
 
typedef Translation< float, 3 > Translation3f
 
typedef Translation< double, 3 > Translation3d
 

Enumerations

enum  CholmodMode { CholmodAuto , CholmodSimplicialLLt , CholmodSupernodalLLt , CholmodLDLt }
 
enum  { Large = 2 , Small = 3 }
 
enum  { DontAlignCols = 1 }
 
enum  { StreamPrecision = -1 , FullPrecision = -2 }
 
enum  UpLoType {
  Lower =0x1 , Upper =0x2 , UnitDiag =0x4 , ZeroDiag =0x8 ,
  UnitLower =UnitDiag|Lower , UnitUpper =UnitDiag|Upper , StrictlyLower =ZeroDiag|Lower , StrictlyUpper =ZeroDiag|Upper ,
  SelfAdjoint =0x10 , Symmetric =0x20
}
 Enum containing possible values for the Mode or UpLo parameter of MatrixBase::selfadjointView() and MatrixBase::triangularView(), and selfadjoint solvers. More...
 
enum  AlignmentType {
  Unaligned =0 , Aligned8 =8 , Aligned16 =16 , Aligned32 =32 ,
  Aligned64 =64 , Aligned128 =128 , AlignedMask =255 , Aligned =16 ,
  AlignedMax = Unaligned
}
 Enum for indicating whether a buffer is aligned or not. More...
 
enum  DirectionType { Vertical , Horizontal , BothDirections }
 Enum containing possible values for the Direction parameter of Reverse, PartialReduxExpr and VectorwiseOp. More...
 
enum  TraversalType {
  DefaultTraversal , LinearTraversal , InnerVectorizedTraversal , LinearVectorizedTraversal ,
  SliceVectorizedTraversal , InvalidTraversal , AllAtOnceTraversal
}
 
enum  UnrollingType { NoUnrolling , InnerUnrolling , CompleteUnrolling }
 
enum  SpecializedType { Specialized , BuiltIn }
 
enum  StorageOptions { ColMajor = 0 , RowMajor = 0x1 , AutoAlign = 0 , DontAlign = 0x2 }
 Enum containing possible values for the _Options template parameter of Matrix, Array and BandMatrix. More...
 
enum  SideType { OnTheLeft = 1 , OnTheRight = 2 }
 Enum for specifying whether to apply or solve on the left or right. More...
 
enum  NaNPropagationOptions { PropagateFast = 0 , PropagateNaN , PropagateNumbers }
 Enum for specifying NaN-propagation behavior, e.g. More...
 
enum  NoChange_t { NoChange }
 
enum  Sequential_t { Sequential }
 
enum  Default_t { Default }
 
enum  AmbiVectorMode { IsDense = 0 , IsSparse }
 
enum  AccessorLevels { ReadOnlyAccessors , WriteAccessors , DirectAccessors , DirectWriteAccessors }
 Used as template parameter in DenseCoeffBase and MapBase to indicate which accessors should be provided. More...
 
enum  DecompositionOptions {
  Pivoting = 0x01 , NoPivoting = 0x02 , ComputeFullU = 0x04 , ComputeThinU = 0x08 ,
  ComputeFullV = 0x10 , ComputeThinV = 0x20 , EigenvaluesOnly = 0x40 , ComputeEigenvectors = 0x80 ,
  EigVecMask = EigenvaluesOnly | ComputeEigenvectors , Ax_lBx = 0x100 , ABx_lx = 0x200 , BAx_lx = 0x400 ,
  GenEigMask = Ax_lBx | ABx_lx | BAx_lx
}
 Enum with options to give to various decompositions. More...
 
enum  QRPreconditioners { NoQRPreconditioner , HouseholderQRPreconditioner , ColPivHouseholderQRPreconditioner , FullPivHouseholderQRPreconditioner }
 Possible values for the QRPreconditioner template parameter of JacobiSVD. More...
 
enum  ComputationInfo { Success = 0 , NumericalIssue = 1 , NoConvergence = 2 , InvalidInput = 3 }
 Enum for reporting the status of a computation. More...
 
enum  TransformTraits { Isometry = 0x1 , Affine = 0x2 , AffineCompact = 0x10 | Affine , Projective = 0x20 }
 Enum used to specify how a particular transformation is stored in a matrix. More...
 
enum  ProductImplType {
  DefaultProduct =0 , LazyProduct , AliasFreeProduct , CoeffBasedProductMode ,
  LazyCoeffBasedProductMode , OuterProduct , InnerProduct , GemvProduct ,
  GemmProduct
}
 
enum  Action { GetAction , SetAction }
 
enum  AutoSize_t { AutoSize }
 
enum  SimplicialCholeskyMode { SimplicialCholeskyLLT , SimplicialCholeskyLDLT }
 
enum  { StandardCompressedFormat = 2 }
 

Functions

template<typename _Scalar , int _Options, typename _StorageIndex >
cholmod_sparse viewAsCholmod (Ref< SparseMatrix< _Scalar, _Options, _StorageIndex > > mat)
 Wraps the Eigen sparse matrix mat into a Cholmod sparse matrix object.
 
template<typename _Scalar , int _Options, typename _Index >
const cholmod_sparse viewAsCholmod (const SparseMatrix< _Scalar, _Options, _Index > &mat)
 
template<typename _Scalar , int _Options, typename _Index >
const cholmod_sparse viewAsCholmod (const SparseVector< _Scalar, _Options, _Index > &mat)
 
template<typename _Scalar , int _Options, typename _Index , unsigned int UpLo>
cholmod_sparse viewAsCholmod (const SparseSelfAdjointView< const SparseMatrix< _Scalar, _Options, _Index >, UpLo > &mat)
 Returns a view of the Eigen sparse matrix mat as Cholmod sparse matrix.
 
template<typename Derived >
cholmod_dense viewAsCholmod (MatrixBase< Derived > &mat)
 Returns a view of the Eigen dense matrix mat as Cholmod dense matrix.
 
template<typename Scalar , int Flags, typename StorageIndex >
MappedSparseMatrix< Scalar, Flags, StorageIndex > viewAsEigen (cholmod_sparse &cm)
 Returns a view of the Cholmod sparse matrix cm as an Eigen sparse matrix.
 
template<typename FirstType , typename SizeType , typename IncrType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type, typename internal::cleanup_seq_incr< IncrType >::type > seqN (FirstType first, SizeType size, IncrType incr)
 
template<typename FirstType , typename SizeType >
ArithmeticSequence< typename internal::cleanup_index_type< FirstType >::type, typename internal::cleanup_index_type< SizeType >::type > seqN (FirstType first, SizeType size)
 
template<typename FirstType , typename LastType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index > >::type seq (FirstType f, LastType l)
 
template<typename FirstTypeDerived , typename LastType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type seq (const symbolic::BaseExpr< FirstTypeDerived > &f, LastType l)
 
template<typename FirstType , typename LastTypeDerived >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > >::type seq (FirstType f, const symbolic::BaseExpr< LastTypeDerived > &l)
 
template<typename FirstTypeDerived , typename LastTypeDerived >
ArithmeticSequence< FirstTypeDerived, symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< internal::FixedInt< 1 > > > > seq (const symbolic::BaseExpr< FirstTypeDerived > &f, const symbolic::BaseExpr< LastTypeDerived > &l)
 
template<typename FirstType , typename LastType , typename IncrType >
internal::enable_if<!(symbolic::is_symbolic< FirstType >::value||symbolic::is_symbolic< LastType >::value), ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, Index, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq (FirstType f, LastType l, IncrType incr)
 
template<typename FirstTypeDerived , typename LastType , typename IncrType >
internal::enable_if<!symbolic::is_symbolic< LastType >::value, ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< symbolic::NegateExpr< FirstTypeDerived >, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq (const symbolic::BaseExpr< FirstTypeDerived > &f, LastType l, IncrType incr)
 
template<typename FirstType , typename LastTypeDerived , typename IncrType >
internal::enable_if<!symbolic::is_symbolic< FirstType >::value, ArithmeticSequence< typenameinternal::cleanup_index_type< FirstType >::type, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::ValueExpr<> >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typenameinternal::cleanup_seq_incr< IncrType >::type > >, typenameinternal::cleanup_seq_incr< IncrType >::type > >::type seq (FirstType f, const symbolic::BaseExpr< LastTypeDerived > &l, IncrType incr)
 
template<typename FirstTypeDerived , typename LastTypeDerived , typename IncrType >
ArithmeticSequence< FirstTypeDerived, symbolic::QuotientExpr< symbolic::AddExpr< symbolic::AddExpr< LastTypeDerived, symbolic::NegateExpr< FirstTypeDerived > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, symbolic::ValueExpr< typename internal::cleanup_seq_incr< IncrType >::type > >, typename internal::cleanup_seq_incr< IncrType >::type > seq (const symbolic::BaseExpr< FirstTypeDerived > &f, const symbolic::BaseExpr< LastTypeDerived > &l, IncrType incr)
 
template<typename MatrixDerived , typename PermutationDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, PermutationDerived, AliasFreeProduct > operator* (const MatrixBase< MatrixDerived > &matrix, const PermutationBase< PermutationDerived > &permutation)
 
template<typename PermutationDerived , typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< PermutationDerived, MatrixDerived, AliasFreeProduct > operator* (const PermutationBase< PermutationDerived > &permutation, const MatrixBase< MatrixDerived > &matrix)
 
std::ptrdiff_t l1CacheSize ()
 
std::ptrdiff_t l2CacheSize ()
 
std::ptrdiff_t l3CacheSize ()
 
void setCpuCacheSizes (std::ptrdiff_t l1, std::ptrdiff_t l2, std::ptrdiff_t l3)
 Set the cpu L1 and L2 cache sizes (in bytes).
 
void initParallel ()
 Must be call first when calling Eigen from multiple threads.
 
int nbThreads ()
 
void setNbThreads (int v)
 Sets the max number of threads reserved for Eigen.
 
template<typename MatrixDerived , typename TranspositionsDerived >
EIGEN_DEVICE_FUNC const Product< MatrixDerived, TranspositionsDerived, AliasFreeProduct > operator* (const MatrixBase< MatrixDerived > &matrix, const TranspositionsBase< TranspositionsDerived > &transpositions)
 
template<typename TranspositionsDerived , typename MatrixDerived >
EIGEN_DEVICE_FUNC const Product< TranspositionsDerived, MatrixDerived, AliasFreeProduct > operator* (const TranspositionsBase< TranspositionsDerived > &transpositions, const MatrixBase< MatrixDerived > &matrix)
 
template<int N>
internal::FixedInt< N > fix ()
 
template<int N, typename T >
internal::VariableAndFixedInt< N > fix (T val)
 
UniformScaling< float > Scaling (float s)
 Constructs a uniform scaling from scale factor s.
 
UniformScaling< doubleScaling (double s)
 Constructs a uniform scaling from scale factor s.
 
template<typename RealScalar >
UniformScaling< std::complex< RealScalar > > Scaling (const std::complex< RealScalar > &s)
 Constructs a uniform scaling from scale factor s.
 
template<typename Scalar >
DiagonalMatrix< Scalar, 2 > Scaling (const Scalar &sx, const Scalar &sy)
 Constructs a 2D axis aligned scaling.
 
template<typename Scalar >
DiagonalMatrix< Scalar, 3 > Scaling (const Scalar &sx, const Scalar &sy, const Scalar &sz)
 Constructs a 3D axis aligned scaling.
 
template<typename Derived >
const DiagonalWrapper< const Derived > Scaling (const MatrixBase< Derived > &coeffs)
 Constructs an axis aligned scaling expression from vector expression coeffs This is an alias for coeffs.asDiagonal()
 
template<typename Derived , typename OtherDerived >
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
 \geometry_module
 
template<typename OtherDerived , typename VectorsType , typename CoeffsType , int Side>
internal::matrix_type_times_scalar_type< typenameVectorsType::Scalar, OtherDerived >::Type operator* (const MatrixBase< OtherDerived > &other, const HouseholderSequence< VectorsType, CoeffsType, Side > &h)
 Computes the product of a matrix with a Householder sequence.
 
template<typename VectorsType , typename CoeffsType >
HouseholderSequence< VectorsType, CoeffsTypehouseholderSequence (const VectorsType &v, const CoeffsType &h)
 \householder_module
 
template<typename VectorsType , typename CoeffsType >
HouseholderSequence< VectorsType, CoeffsType, OnTheRight > rightHouseholderSequence (const VectorsType &v, const CoeffsType &h)
 \householder_module
 
int klu_solve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], klu_common *Common, double)
 A sparse LU factorization and solver based on KLU.
 
int klu_solve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex< double >B[], klu_common *Common, std::complex< double >)
 
int klu_tsolve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, double B[], klu_common *Common, double)
 
int klu_tsolve (klu_symbolic *Symbolic, klu_numeric *Numeric, Index ldim, Index nrhs, std::complex< double >B[], klu_common *Common, std::complex< double >)
 
klu_numericklu_factor (int Ap[], int Ai[], double Ax[], klu_symbolic *Symbolic, klu_common *Common, double)
 
klu_numericklu_factor (int Ap[], int Ai[], std::complex< double > Ax[], klu_symbolic *Symbolic, klu_common *Common, std::complex< double >)
 
template<typename DenseDerived , typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerivedoperator+ (const MatrixBase< DenseDerived > &a, const SparseMatrixBase< SparseDerived > &b)
 
template<typename SparseDerived , typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_sum_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerivedoperator+ (const SparseMatrixBase< SparseDerived > &a, const MatrixBase< DenseDerived > &b)
 
template<typename DenseDerived , typename SparseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename DenseDerived::Scalar, typename SparseDerived::Scalar >, const DenseDerived, const SparseDerivedoperator- (const MatrixBase< DenseDerived > &a, const SparseMatrixBase< SparseDerived > &b)
 
template<typename SparseDerived , typename DenseDerived >
EIGEN_STRONG_INLINE const CwiseBinaryOp< internal::scalar_difference_op< typename SparseDerived::Scalar, typename DenseDerived::Scalar >, const SparseDerived, const DenseDerivedoperator- (const SparseMatrixBase< SparseDerived > &a, const MatrixBase< DenseDerived > &b)
 
template<typename SparseDerived , typename PermDerived >
const Product< SparseDerived, PermDerived, AliasFreeProduct > operator* (const SparseMatrixBase< SparseDerived > &matrix, const PermutationBase< PermDerived > &perm)
 
template<typename SparseDerived , typename PermDerived >
const Product< PermDerived, SparseDerived, AliasFreeProduct > operator* (const PermutationBase< PermDerived > &perm, const SparseMatrixBase< SparseDerived > &matrix)
 
template<typename SparseDerived , typename PermutationType >
const Product< SparseDerived, Inverse< PermutationType >, AliasFreeProduct > operator* (const SparseMatrixBase< SparseDerived > &matrix, const InverseImpl< PermutationType, PermutationStorage > &tperm)
 
template<typename SparseDerived , typename PermutationType >
const Product< Inverse< PermutationType >, SparseDerived, AliasFreeProduct > operator* (const InverseImpl< PermutationType, PermutationStorage > &tperm, const SparseMatrixBase< SparseDerived > &matrix)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], double, int)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], std::complex< double >, int)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], double, SuiteSparse_long)
 
void umfpack_defaults (double control[UMFPACK_CONTROL], std::complex< double >, SuiteSparse_long)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, int)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex< double >, int)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, SuiteSparse_long)
 
void umfpack_report_info (double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex< double >, SuiteSparse_long)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, double, int)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, std::complex< double >, int)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, double, SuiteSparse_long)
 
void umfpack_report_status (double control[UMFPACK_CONTROL], int status, std::complex< double >, SuiteSparse_long)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], double, int)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], std::complex< double >, int)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], double, SuiteSparse_long)
 
void umfpack_report_control (double control[UMFPACK_CONTROL], std::complex< double >, SuiteSparse_long)
 
void umfpack_free_numeric (void **Numeric, double, int)
 
void umfpack_free_numeric (void **Numeric, std::complex< double >, int)
 
void umfpack_free_numeric (void **Numeric, double, SuiteSparse_long)
 
void umfpack_free_numeric (void **Numeric, std::complex< double >, SuiteSparse_long)
 
void umfpack_free_symbolic (void **Symbolic, double, int)
 
void umfpack_free_symbolic (void **Symbolic, std::complex< double >, int)
 
void umfpack_free_symbolic (void **Symbolic, double, SuiteSparse_long)
 
void umfpack_free_symbolic (void **Symbolic, std::complex< double >, SuiteSparse_long)
 
int umfpack_symbolic (int n_row, int n_col, const int Ap[], const int Ai[], const double Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_symbolic (int n_row, int n_col, const int Ap[], const int Ai[], const std::complex< double > Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_symbolic (SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_symbolic (SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_numeric (const int Ap[], const int Ai[], const double Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_numeric (const int Ap[], const int Ai[], const std::complex< double > Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_numeric (const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_numeric (const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_solve (int sys, const int Ap[], const int Ai[], const double Ax[], double X[], const double B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_solve (int sys, const int Ap[], const int Ai[], const std::complex< double > Ax[], std::complex< double > X[], const std::complex< double > B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_solve (int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], double X[], const double B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
SuiteSparse_long umfpack_solve (int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const std::complex< double > Ax[], std::complex< double > X[], const std::complex< double > B[], void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
 
int umfpack_get_lunz (int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
 
int umfpack_get_lunz (int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex< double >)
 
SuiteSparse_long umfpack_get_lunz (SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, double)
 
SuiteSparse_long umfpack_get_lunz (SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, std::complex< double >)
 
int umfpack_get_numeric (int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
 
int umfpack_get_numeric (int Lp[], int Lj[], std::complex< double > Lx[], int Up[], int Ui[], std::complex< double > Ux[], int P[], int Q[], std::complex< double > Dx[], int *do_recip, double Rs[], void *Numeric)
 
SuiteSparse_long umfpack_get_numeric (SuiteSparse_long Lp[], SuiteSparse_long Lj[], double Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], double Ux[], SuiteSparse_long P[], SuiteSparse_long Q[], double Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric)
 
SuiteSparse_long umfpack_get_numeric (SuiteSparse_long Lp[], SuiteSparse_long Lj[], std::complex< double > Lx[], SuiteSparse_long Up[], SuiteSparse_long Ui[], std::complex< double > Ux[], SuiteSparse_long P[], SuiteSparse_long Q[], std::complex< double > Dx[], SuiteSparse_long *do_recip, double Rs[], void *Numeric)
 
int umfpack_get_determinant (double *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], int)
 
int umfpack_get_determinant (std::complex< double > *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], int)
 
SuiteSparse_long umfpack_get_determinant (double *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], SuiteSparse_long)
 
SuiteSparse_long umfpack_get_determinant (std::complex< double > *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], SuiteSparse_long)
 

Variables

EIGEN_DEVICE_FUNC const Eigen::ArrayBase< Derived > & exponents
 
const int Dynamic = -1
 This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.
 
const int DynamicIndex = 0xffffff
 This value means that a signed quantity (e.g., a signed index) is not known at compile-time, and that instead its value has to be specified at runtime.
 
const int UndefinedIncr = 0xfffffe
 This value means that the increment to go from one value to another in a sequence is not constant for each step.
 
const int Infinity = -1
 This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm<int>().
 
const int HugeCost = 10000
 This value means that the cost to evaluate an expression coefficient is either very expensive or cannot be known at compile time.
 
const unsigned int RowMajorBit = 0x1
 for a matrix, this means that the storage order is row-major.
 
const unsigned int EvalBeforeNestingBit = 0x2
 means the expression should be evaluated by the calling expression
 
EIGEN_DEPRECATED const unsigned int EvalBeforeAssigningBit = 0x4
 
const unsigned int PacketAccessBit = 0x8
 Short version: means the expression might be vectorized.
 
const unsigned int ActualPacketAccessBit = 0x0
 
const unsigned int LinearAccessBit = 0x10
 Short version: means the expression can be seen as 1D vector.
 
const unsigned int LvalueBit = 0x20
 Means the expression has a coeffRef() method, i.e.
 
const unsigned int DirectAccessBit = 0x40
 Means that the underlying array of coefficients can be directly accessed as a plain strided array.
 
EIGEN_DEPRECATED const unsigned int AlignedBit = 0x80
 
const unsigned int NestByRefBit = 0x100
 
const unsigned int NoPreferredStorageOrderBit = 0x200
 for an expression, this means that the storage order can be either row-major or column-major.
 
const unsigned int CompressedAccessBit = 0x400
 Means that the underlying coefficients can be accessed through pointers to the sparse (un)compressed storage format, that is, the expression provides:
 
const unsigned int HereditaryBits
 
const int AutoOrder = 2
 
const int CoherentAccessPattern = 0x1
 
const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern
 
const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern
 
const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern
 

Detailed Description

Namespace containing all symbols from the Eigen library.

Typedef Documentation

◆ AlignedScaling2d

◆ AlignedScaling2f

◆ AlignedScaling3d

◆ AlignedScaling3f

◆ Index

typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE Eigen::Index

The Index type as used for the API.

To change this, #define the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE.

See also
\blank TopicPreprocessorDirectives, StorageIndex.

Enumeration Type Documentation

◆ anonymous enum

Enumerator
StandardCompressedFormat 

used by Ref<SparseMatrix> to specify whether the input storage must be in standard compressed form

Function Documentation

◆ householderSequence()

HouseholderSequence< VectorsType, CoeffsType > Eigen::householderSequence ( const VectorsType v,
const CoeffsType h 
)

\householder_module

Convenience function for constructing a Householder sequence.

Returns
A HouseholderSequence constructed from the specified arguments.

◆ klu_solve()

int Eigen::klu_solve ( klu_symbolic Symbolic,
klu_numeric Numeric,
Index  ldim,
Index  nrhs,
double  B[],
klu_common Common,
double   
)
inline

A sparse LU factorization and solver based on KLU.

This class allows to solve for A.X = B sparse linear problems via a LU factorization using the KLU library. The sparse matrix A must be squared and full rank. The vectors or matrices X and B can be either dense or sparse.

Warning
The input matrix A should be in a compressed and column-major form. Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
Template Parameters
_MatrixTypethe type of the sparse matrix A, it must be a SparseMatrix<>

\implsparsesolverconcept

See also
TutorialSparseSolverConcept, class UmfPackLU, class SparseLU

◆ l1CacheSize()

std::ptrdiff_t Eigen::l1CacheSize ( )
inline
Returns
the currently set level 1 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
See also
setCpuCacheSize

◆ l2CacheSize()

std::ptrdiff_t Eigen::l2CacheSize ( )
inline
Returns
the currently set level 2 cpu cache size (in bytes) used to estimate the ideal blocking size parameters.
See also
setCpuCacheSize

◆ l3CacheSize()

std::ptrdiff_t Eigen::l3CacheSize ( )
inline
Returns
the currently set level 3 cpu cache size (in bytes) used to estimate the ideal blocking size paramete\ rs.
See also
setCpuCacheSize

◆ nbThreads()

int Eigen::nbThreads ( )
inline
Returns
the max number of threads reserved for Eigen
See also
setNbThreads

◆ operator*() [1/9]

template<typename SparseDerived , typename PermutationType >
const Product< Inverse< PermutationType >, SparseDerived, AliasFreeProduct > Eigen::operator* ( const InverseImpl< PermutationType, PermutationStorage > &  tperm,
const SparseMatrixBase< SparseDerived > &  matrix 
)
inline
Returns
the matrix with the inverse permutation applied to the rows.

◆ operator*() [2/9]

EIGEN_DEVICE_FUNC const Product< MatrixDerived, PermutationDerived, AliasFreeProduct > Eigen::operator* ( const MatrixBase< MatrixDerived > &  matrix,
const PermutationBase< PermutationDerived > &  permutation 
)
Returns
the matrix with the permutation applied to the columns.

◆ operator*() [3/9]

EIGEN_DEVICE_FUNC const Product< MatrixDerived, TranspositionsDerived, AliasFreeProduct > Eigen::operator* ( const MatrixBase< MatrixDerived > &  matrix,
const TranspositionsBase< TranspositionsDerived > &  transpositions 
)
Returns
the matrix with the transpositions applied to the columns.

◆ operator*() [4/9]

internal::matrix_type_times_scalar_type< typenameVectorsType::Scalar, OtherDerived >::Type Eigen::operator* ( const MatrixBase< OtherDerived > &  other,
const HouseholderSequence< VectorsType, CoeffsType, Side > &  h 
)

Computes the product of a matrix with a Householder sequence.

Parameters
[in]otherMatrix being multiplied.
[in]hHouseholderSequence being multiplied.
Returns
Expression object representing the product.

This function computes $ MH $ where $ M $ is the matrix other and $ H $ is the Householder sequence represented by h.

◆ operator*() [5/9]

const Product< PermDerived, SparseDerived, AliasFreeProduct > Eigen::operator* ( const PermutationBase< PermDerived > &  perm,
const SparseMatrixBase< SparseDerived > &  matrix 
)
inline
Returns
the matrix with the permutation applied to the rows

◆ operator*() [6/9]

EIGEN_DEVICE_FUNC const Product< PermutationDerived, MatrixDerived, AliasFreeProduct > Eigen::operator* ( const PermutationBase< PermutationDerived > &  permutation,
const MatrixBase< MatrixDerived > &  matrix 
)
Returns
the matrix with the permutation applied to the rows.

◆ operator*() [7/9]

template<typename SparseDerived , typename PermutationType >
const Product< SparseDerived, Inverse< PermutationType >, AliasFreeProduct > Eigen::operator* ( const SparseMatrixBase< SparseDerived > &  matrix,
const InverseImpl< PermutationType, PermutationStorage > &  tperm 
)
inline
Returns
the matrix with the inverse permutation applied to the columns.

◆ operator*() [8/9]

const Product< SparseDerived, PermDerived, AliasFreeProduct > Eigen::operator* ( const SparseMatrixBase< SparseDerived > &  matrix,
const PermutationBase< PermDerived > &  perm 
)
inline
Returns
the matrix with the permutation applied to the columns

◆ operator*() [9/9]

EIGEN_DEVICE_FUNC const Product< TranspositionsDerived, MatrixDerived, AliasFreeProduct > Eigen::operator* ( const TranspositionsBase< TranspositionsDerived > &  transpositions,
const MatrixBase< MatrixDerived > &  matrix 
)
Returns
the matrix with the transpositions applied to the rows.

◆ rightHouseholderSequence()

HouseholderSequence< VectorsType, CoeffsType, OnTheRight > Eigen::rightHouseholderSequence ( const VectorsType v,
const CoeffsType h 
)

\householder_module

Convenience function for constructing a Householder sequence.

Returns
A HouseholderSequence constructed from the specified arguments.

This function differs from householderSequence() in that the template argument OnTheSide of the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft.

◆ seqN() [1/2]

Returns
an ArithmeticSequence starting at first, of length size, and unit increment
See also
seqN(FirstType,SizeType,IncrType), seq(FirstType,LastType)

◆ seqN() [2/2]

Returns
an ArithmeticSequence starting at first, of length size, and increment incr
See also
seqN(FirstType,SizeType), seq(FirstType,LastType,IncrType)

◆ setCpuCacheSizes()

void Eigen::setCpuCacheSizes ( std::ptrdiff_t  l1,
std::ptrdiff_t  l2,
std::ptrdiff_t  l3 
)
inline

Set the cpu L1 and L2 cache sizes (in bytes).

These values are use to adjust the size of the blocks for the algorithms working per blocks.

See also
computeProductBlockingSizes

◆ setNbThreads()

void Eigen::setNbThreads ( int  v)
inline

Sets the max number of threads reserved for Eigen.

See also
nbThreads

◆ viewAsCholmod() [1/3]

template<typename _Scalar , int _Options, typename _Index , unsigned int UpLo>
cholmod_sparse Eigen::viewAsCholmod ( const SparseSelfAdjointView< const SparseMatrix< _Scalar, _Options, _Index >, UpLo > &  mat)

Returns a view of the Eigen sparse matrix mat as Cholmod sparse matrix.

The data are not copied but shared.

◆ viewAsCholmod() [2/3]

template<typename Derived >
cholmod_dense Eigen::viewAsCholmod ( MatrixBase< Derived > &  mat)

Returns a view of the Eigen dense matrix mat as Cholmod dense matrix.

The data are not copied but shared.

◆ viewAsCholmod() [3/3]

template<typename _Scalar , int _Options, typename _StorageIndex >
cholmod_sparse Eigen::viewAsCholmod ( Ref< SparseMatrix< _Scalar, _Options, _StorageIndex > >  mat)

Wraps the Eigen sparse matrix mat into a Cholmod sparse matrix object.

Note that the data are shared.

◆ viewAsEigen()

template<typename Scalar , int Flags, typename StorageIndex >
MappedSparseMatrix< Scalar, Flags, StorageIndex > Eigen::viewAsEigen ( cholmod_sparse cm)

Returns a view of the Cholmod sparse matrix cm as an Eigen sparse matrix.

The data are not copied but shared.

Variable Documentation

◆ Dynamic

const int Eigen::Dynamic = -1

This value means that a positive quantity (e.g., a size) is not known at compile-time, and that instead the value is stored in some runtime variable.

Changing the value of Dynamic breaks the ABI, as Dynamic is often used as a template parameter for Matrix.

◆ exponents

EIGEN_DEVICE_FUNC const Eigen::ArrayBase<Derived>& Eigen::exponents
Initial value:
{
typedef typename internal::promote_scalar_arg<typename Derived::Scalar,Scalar,
EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar)>::type PromotedScalar

◆ HereditaryBits

const unsigned int Eigen::HereditaryBits
Initial value:
const unsigned int EvalBeforeNestingBit
means the expression should be evaluated by the calling expression
Definition Constants.h:70
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition Constants.h:66

◆ HugeCost

const int Eigen::HugeCost = 10000

This value means that the cost to evaluate an expression coefficient is either very expensive or cannot be known at compile time.

This value has to be positive to (1) simplify cost computation, and (2) allow to distinguish between a very expensive and very very expensive expressions. It thus must also be large enough to make sure unrolling won't happen and that sub expressions will be evaluated, but not too large to avoid overflow.

◆ Infinity

const int Eigen::Infinity = -1

This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm<int>().

The value Infinity there means the L-infinity norm.