|
Medial Code Documentation
|
Two-sided Jacobi SVD decomposition of a rectangular matrix. More...
#include <JacobiSVD.h>
Public Types | |
| enum | { RowsAtCompileTime = MatrixType::RowsAtCompileTime , ColsAtCompileTime = MatrixType::ColsAtCompileTime , DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime) , MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime , MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime , MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime) , MatrixOptions = MatrixType::Options } |
| typedef _MatrixType | MatrixType |
| typedef MatrixType::Scalar | Scalar |
| typedef NumTraits< typenameMatrixType::Scalar >::Real | RealScalar |
| typedef Base::MatrixUType | MatrixUType |
| typedef Base::MatrixVType | MatrixVType |
| typedef Base::SingularValuesType | SingularValuesType |
| typedef internal::plain_row_type< MatrixType >::type | RowType |
| typedef internal::plain_col_type< MatrixType >::type | ColType |
| typedef Matrix< Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime > | WorkMatrixType |
Public Types inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > | |
| enum | |
| typedef internal::traits< JacobiSVD< _MatrixType, QRPreconditioner > >::MatrixType | MatrixType |
| typedef MatrixType::Scalar | Scalar |
| typedef NumTraits< typenameMatrixType::Scalar >::Real | RealScalar |
| typedef Eigen::internal::traits< SVDBase >::StorageIndex | StorageIndex |
| typedef Eigen::Index | Index |
| typedef Matrix< Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime > | MatrixUType |
| typedef Matrix< Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime > | MatrixVType |
| typedef internal::plain_diag_type< MatrixType, RealScalar >::type | SingularValuesType |
Public Types inherited from Eigen::SolverBase< Derived > | |
| enum | { RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime , ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime , SizeAtCompileTime , MaxRowsAtCompileTime = internal::traits<Derived>::MaxRowsAtCompileTime , MaxColsAtCompileTime = internal::traits<Derived>::MaxColsAtCompileTime , MaxSizeAtCompileTime , IsVectorAtCompileTime , NumDimensions = int(MaxSizeAtCompileTime) == 1 ? 0 : bool(IsVectorAtCompileTime) ? 1 : 2 } |
| typedef EigenBase< Derived > | Base |
| typedef internal::traits< Derived >::Scalar | Scalar |
| typedef Scalar | CoeffReturnType |
| typedef Transpose< const Derived > | ConstTransposeReturnType |
| typedef internal::conditional< NumTraits< Scalar >::IsComplex, CwiseUnaryOp< internal::scalar_conjugate_op< Scalar >, constConstTransposeReturnType >, constConstTransposeReturnType >::type | AdjointReturnType |
Public Types inherited from Eigen::EigenBase< Derived > | |
| typedef Eigen::Index | Index |
| The interface type of indices. | |
| typedef internal::traits< Derived >::StorageKind | StorageKind |
Public Member Functions | |
| JacobiSVD () | |
| Default Constructor. | |
| JacobiSVD (Index rows, Index cols, unsigned int computationOptions=0) | |
| Default Constructor with memory preallocation. | |
| JacobiSVD (const MatrixType &matrix, unsigned int computationOptions=0) | |
| Constructor performing the decomposition of given matrix. | |
| JacobiSVD & | compute (const MatrixType &matrix, unsigned int computationOptions) |
| Method performing the decomposition of given matrix using custom options. | |
| JacobiSVD & | compute (const MatrixType &matrix) |
| Method performing the decomposition of given matrix using current options. | |
| bool | computeU () const |
| bool | computeV () const |
| Index | rows () const |
| Index | cols () const |
| Index | rank () const |
Public Member Functions inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > | |
| JacobiSVD< _MatrixType, QRPreconditioner > & | derived () |
| const JacobiSVD< _MatrixType, QRPreconditioner > & | derived () const |
| const MatrixUType & | matrixU () const |
| const MatrixVType & | matrixV () const |
| const SingularValuesType & | singularValues () const |
| Index | nonzeroSingularValues () const |
| Index | rank () const |
| JacobiSVD< _MatrixType, QRPreconditioner > & | setThreshold (const RealScalar &threshold) |
| Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), which need to determine when singular values are to be considered nonzero. | |
| JacobiSVD< _MatrixType, QRPreconditioner > & | setThreshold (Default_t) |
| Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold. | |
| RealScalar | threshold () const |
| Returns the threshold that will be used by certain methods such as rank(). | |
| bool | computeU () const |
| bool | computeV () const |
| Index | rows () const |
| Index | cols () const |
| EIGEN_DEVICE_FUNC ComputationInfo | info () const |
| Reports whether previous computation was successful. | |
| void | _solve_impl (const RhsType &rhs, DstType &dst) const |
| void | _solve_impl_transposed (const RhsType &rhs, DstType &dst) const |
Public Member Functions inherited from Eigen::SolverBase< Derived > | |
| SolverBase () | |
| Default constructor. | |
| template<typename Rhs > | |
| const Solve< Derived, Rhs > | solve (const MatrixBase< Rhs > &b) const |
| const ConstTransposeReturnType | transpose () const |
| const AdjointReturnType | adjoint () const |
| EIGEN_DEVICE_FUNC Derived & | derived () |
| EIGEN_DEVICE_FUNC const Derived & | derived () const |
Public Member Functions inherited from Eigen::EigenBase< Derived > | |
| EIGEN_DEVICE_FUNC Derived & | derived () |
| EIGEN_DEVICE_FUNC const Derived & | derived () const |
| EIGEN_DEVICE_FUNC Derived & | const_cast_derived () const |
| EIGEN_DEVICE_FUNC const Derived & | const_derived () const |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | rows () const EIGEN_NOEXCEPT |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | cols () const EIGEN_NOEXCEPT |
| EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR Index | size () const EIGEN_NOEXCEPT |
| template<typename Dest > | |
| EIGEN_DEVICE_FUNC void | evalTo (Dest &dst) const |
| template<typename Dest > | |
| EIGEN_DEVICE_FUNC void | addTo (Dest &dst) const |
| template<typename Dest > | |
| EIGEN_DEVICE_FUNC void | subTo (Dest &dst) const |
| template<typename Dest > | |
| EIGEN_DEVICE_FUNC void | applyThisOnTheRight (Dest &dst) const |
| template<typename Dest > | |
| EIGEN_DEVICE_FUNC void | applyThisOnTheLeft (Dest &dst) const |
Protected Attributes | |
| WorkMatrixType | m_workMatrix |
| internal::qr_preconditioner_impl< MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows > | m_qr_precond_morecols |
| internal::qr_preconditioner_impl< MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols > | m_qr_precond_morerows |
| MatrixType | m_scaledMatrix |
| MatrixUType | m_matrixU |
| MatrixVType | m_matrixV |
| SingularValuesType | m_singularValues |
| ComputationInfo | m_info |
| bool | m_isInitialized |
| bool | m_isAllocated |
| bool | m_usePrescribedThreshold |
| bool | m_computeFullU |
| bool | m_computeThinU |
| bool | m_computeFullV |
| bool | m_computeThinV |
| unsigned int | m_computationOptions |
| Index | m_nonzeroSingularValues |
| Index | m_rows |
| Index | m_cols |
| Index | m_diagSize |
| RealScalar | m_prescribedThreshold |
Protected Attributes inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > | |
| MatrixUType | m_matrixU |
| MatrixVType | m_matrixV |
| SingularValuesType | m_singularValues |
| ComputationInfo | m_info |
| bool | m_isInitialized |
| bool | m_isAllocated |
| bool | m_usePrescribedThreshold |
| bool | m_computeFullU |
| bool | m_computeThinU |
| bool | m_computeFullV |
| bool | m_computeThinV |
| unsigned int | m_computationOptions |
| Index | m_nonzeroSingularValues |
| Index | m_rows |
| Index | m_cols |
| Index | m_diagSize |
| RealScalar | m_prescribedThreshold |
Friends | |
| template<typename __MatrixType , int _QRPreconditioner, bool _IsComplex> | |
| struct | internal::svd_precondition_2x2_block_to_be_real |
| template<typename __MatrixType , int _QRPreconditioner, int _Case, bool _DoAnything> | |
| struct | internal::qr_preconditioner_impl |
Additional Inherited Members | |
Protected Member Functions inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > | |
| void | _check_compute_assertions () const |
| void | _check_solve_assertion (const Rhs &b) const |
| bool | allocate (Index rows, Index cols, unsigned int computationOptions) |
| SVDBase () | |
| Default Constructor. | |
Protected Member Functions inherited from Eigen::SolverBase< Derived > | |
| template<bool Transpose_, typename Rhs > | |
| void | _check_solve_assertion (const Rhs &b) const |
Static Protected Member Functions inherited from Eigen::SVDBase< JacobiSVD< _MatrixType, QRPreconditioner > > | |
| static void | check_template_parameters () |
Two-sided Jacobi SVD decomposition of a rectangular matrix.
| _MatrixType | the type of the matrix of which we are computing the SVD decomposition |
| QRPreconditioner | this optional parameter allows to specify the type of QR decomposition that will be used internally for the R-SVD step for non-square matrices. See discussion of possible values below. |
SVD decomposition consists in decomposing any n-by-p matrix A as a product
![\[ A = U S V^* \]](form_184.png)
where U is a n-by-n unitary, V is a p-by-p unitary, and S is a n-by-p real positive matrix which is zero outside of its main diagonal; the diagonal entries of S are known as the singular values of A and the columns of U and V are known as the left and right singular vectors of A respectively.
Singular values are always sorted in decreasing order.
This JacobiSVD decomposition computes only the singular values by default. If you want U or V, you need to ask for them explicitly.
You can ask for only thin U or V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting m be the smaller value among n and p, there are only m singular vectors; the remaining columns of U and V do not correspond to actual singular vectors. Asking for thin U or V means asking for only their m first columns to be formed. So U is then a n-by-m matrix, and V is then a p-by-m matrix. Notice that thin U and V are all you need for (least squares) solving.
Here's an example demonstrating basic usage:
Output:
This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is still 
If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to terminate in finite (and reasonable) time.
The possible values for QRPreconditioner are:
|
inline |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via JacobiSVD::compute(const MatrixType&).
|
inline |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
|
inlineexplicit |
Constructor performing the decomposition of given matrix.
| matrix | the matrix to decompose |
| computationOptions | optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU, ComputeFullV, ComputeThinV. |
Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not available with the (non-default) FullPivHouseholderQR preconditioner.
|
inline |
Method performing the decomposition of given matrix using current options.
| matrix | the matrix to decompose |
This method uses the current computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
| JacobiSVD< MatrixType, QRPreconditioner > & Eigen::JacobiSVD< MatrixType, QRPreconditioner >::compute | ( | const MatrixType & | matrix, |
| unsigned int | computationOptions | ||
| ) |
Method performing the decomposition of given matrix using custom options.
| matrix | the matrix to decompose |
| computationOptions | optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. By default, none is computed. This is a bit-field, the possible bits are ComputeFullU, ComputeThinU, ComputeFullV, ComputeThinV. |
Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not available with the (non-default) FullPivHouseholderQR preconditioner.
|
inline |
|
inline |
|
inline |
*this is the SVD.