Medial Code Documentation
|
FeatureGenerator : creating features from raw signals. More...
#include <InfraMed/InfraMed/InfraMed.h>
#include <Logger/Logger/Logger.h>
#include <MedProcessTools/MedProcessTools/RepProcess.h>
#include <MedProcessTools/MedProcessTools/MedFeatures.h>
#include <SerializableObject/SerializableObject/SerializableObject.h>
#include <MedProcessTools/MedProcessTools/MedModelExceptions.h>
#include <MedTime/MedTime/MedTime.h>
#include <MedAlgo/MedAlgo/MedAlgo.h>
#include <MedAlgo/MedAlgo/MedLM.h>
#include <cfloat>
#include <boost/regex.hpp>
Go to the source code of this file.
Data Structures | |
class | FeatureGenerator |
class | BasicFeatGenerator |
A Basic Stats Generator for calcing simple statics on time window. More... | |
class | AgeGenerator |
Age Generator. More... | |
class | SingletonGenerator |
Singleton. More... | |
class | GenderGenerator |
Gender. More... | |
struct | BinnedLmEstimatesParams |
BinnedLinearModels : parameters. More... | |
class | BinnedLmEstimates |
BinnedLinearModels : Apply a set of liner models to generate features. More... | |
class | RangeFeatGenerator |
RangeFeatGenerator : Generate features for a time range with value signal (for example drug) More... | |
class | ModelFeatGenerator |
Use a model to generate predictions to be used as features. More... | |
class | TimeFeatGenerator |
class | AttrFeatGenerator |
Attribute Feature Generator: creating features from samples attributes. More... | |
class | CategoryDependencyGenerator |
Creates multipal features based on categorical values and statistical dependency strength by Age,Gender groups. More... | |
Macros | |
#define | DEFAULT_FEAT_GNRTR_NTHREADS 8 |
Functions | |
FeatureGeneratorTypes | ftr_generator_name_to_type (const string &generator_name) |
void | get_window_in_sig_time (int _win_from, int _win_to, int _time_unit_win, int _time_unit_sig, int _win_time, int &_min_time, int &_max_time, bool boundOutcomeTime=false, int outcome_time=-1) |
gets a [-_win_to, -_win_from] window in win time unit, and returns [_min_time, _max_time] window in signal time units relative to _win_time boundOutcomeTime is used to future time windows when looking to the future to limit the time window till the outcomeTime | |
TimeRangeTypes | time_range_name_to_type (const string &name) |
Conversion between time-range type and name. | |
string | time_range_type_to_name (TimeRangeTypes type) |
void | get_updated_time_window (UniversalSigVec &time_range_usv, TimeRangeTypes type, int time_unit_range_sig, int time_unit_win, int time_unit_sig, int time, int win_from, int &updated_win_from, int win_to, int &updated_win_to, bool delta_win, int d_win_from, int &updated_d_win_from, int d_win_to, int &updated_d_win_to) |
void | get_updated_time_window (TimeRangeTypes type, int range_from, int range_to, int time, int _win_from, int _win_to, int &updated_win_from, int &updated_win_to) |
FeatureGenerator : creating features from raw signals.
enum BasicFeatureTypes |
Enumerator | |
---|---|
FTR_GEN_BASIC | "basic" - creates basic statistic on time windows - BasicFeatGenerator |
FTR_GEN_AGE | "age" - creating age feature - AgeGenerator |
FTR_GEN_SINGLETON | "singleton" - take the value of a time-less signale - SingletonGenerator |
FTR_GEN_GENDER | "gender" - creating gender feature - GenderGenerator (special case of signleton) |
FTR_GEN_BINNED_LM | "binnedLm" or "binnedLM" - creating linear model for esitmating feature in time points - BinnedLmEstimates |
FTR_GEN_SMOKING | "smoking" - creating smoking feature - SmokingGenerator |
FTR_GEN_KP_SMOKING | "kp_smoking" - creating smoking feature - KpSmokingGenerator |
FTR_GEN_UNIFIED_SMOKING | "unified_smoking" - creating smoking feature - UnifiedSmokingGenerator |
FTR_GEN_RANGE | "range" - creating RangeFeatGenerator |
FTR_GEN_DRG_INTAKE | "drugIntake" - creating drugs feature coverage of prescription time - DrugIntakeGenerator |
FTR_GEN_ALCOHOL | "alcohol" - creating alcohol feature - AlcoholGenerator |
FTR_GEN_MODEL | "model" - creating ModelFeatGenerator |
FTR_GEN_TIME | "time" - creating sample-time features (e.g. differentiate between times of day, season of year, days of the week, etc.). Creates TimeFeatGenerator |
FTR_GEN_ATTR | "attr" - creating features from samples attributes. Creates AttrFeatGenerator |
FTR_GEN_CATEGORY_DEPEND | "category_depend" - creates features from categorical signal that have statistical strength in samples - CategoryDependencyGenerator |
FTR_GEN_EMBEDDING | "embedding" - allows applying a pre trained embedding model to incorporate features into matrix. Creates EmbeddingGenerator |
FTR_GEN_EXTRACT_TBL | "extract_tbl" - extract values from table with keys and rules to join with each patient. Creates FeatureGenExtractTable |
FTR_GEN_ELIXHAUSER | Calculate Current Elixhauser given latest DRG and Diagnosis information. Creates ElixhauserGenerator. |
FTR_GEN_DIABETES_FINDER | "diabetes_finder" - Diabetes Finder feature. Creates DiabetesFinderGenerator |
enum RangeFeatureTypes |
enum TimeFeatTypes |
Time Feature Generator: creating sample-time features (e.g.
differentiate between times of day, season of year, days of the week, etc.)
enum TimeRangeTypes |