Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Data Fields
BinnedLmEstimates Class Reference

BinnedLinearModels : Apply a set of liner models to generate features. More...

#include <FeatureGenerator.h>

Inheritance diagram for BinnedLmEstimates:
FeatureGenerator SerializableObject

Public Member Functions

void set_names ()
 Naming.
 
 BinnedLmEstimates (string _signalName)
 
 BinnedLmEstimates (string _signalName, string init_string)
 
void set (string &_signalName)
 
void set (string &_signalName, BinnedLmEstimatesParams *_params)
 
void init_defaults ()
 
int init (map< string, string > &mapper)
 The parsed fields from init command.
 
virtual void copy (FeatureGenerator *generator)
 
int _learn (MedPidRepository &rep, const MedSamples &samples, vector< RepProcessor * > processors)
 Learn a generator.
 
int _generate (PidDynamicRec &rec, MedFeatures &features, int index, int num, vector< float * > &_p_data)
 generate new feature(s)
 
int filter_features (unordered_set< string > &validFeatures)
 Filter generated features according to a set. return number of valid features (does not affect single-feature genertors, just returns 1/0 if feature name in set)
 
void get_p_data (MedFeatures &features, vector< float * > &_p_data)
 
void set_signal_ids (MedSignals &sigs)
 
void set_sampling_strategy (string &strategy)
 
void prepare_for_age (PidDynamicRec &rec, UniversalSigVec &ageUsv, int &age, int &byear)
 
void prepare_for_age (MedPidRepository &rep, int id, UniversalSigVec &ageUsv, int &age, int &byear)
 
void get_age (int time, int time_unit_from, int &age, int byear)
 
void dprint (const string &pref, int fg_flag)
 
void print ()
 
- Public Member Functions inherited from FeatureGenerator
virtual void prepare (MedFeatures &features, MedPidRepository &rep, MedSamples &samples)
 
void get_p_data (MedFeatures &features)
 
virtual void clear ()
 
void get_required_signal_names (unordered_set< string > &signalNames)
 
virtual void set_required_signal_ids (MedDictionarySections &dict)
 
void get_required_signal_ids (unordered_set< int > &signalIds)
 
virtual void get_generated_features (unordered_set< string > &names_list)
 
virtual void init_tables (MedDictionarySections &dict)
 
virtual void fit_for_repository (MedPidRepository &rep)
 Prepartion and adjustment for model based on repository.
 
int learn (MedPidRepository &rep, const MedSamples &samples, vector< RepProcessor * > processors)
 
int learn (MedPidRepository &rep, const MedSamples &samples)
 
int _generate (PidDynamicRec &in_rep, MedFeatures &features, int index, int num)
 
int generate (PidDynamicRec &in_rep, MedFeatures &features, int index, int num)
 
int generate (PidDynamicRec &in_rep, MedFeatures &features)
 
int generate (MedPidRepository &rep, int id, MedFeatures &features)
 
int generate (MedPidRepository &rep, int id, MedFeatures &features, int index, int num)
 
virtual int _generate (MedFeatures &features)
 
int generate (MedFeatures &features)
 
virtual int init (void *generator_params)
 
virtual int nfeatures ()
 
virtual void get_required_signal_categories (unordered_map< string, vector< string > > &signal_categories_in_use) const
 returns for each used signal it's used categories
 
virtual void make_summary ()
 
void * new_polymorphic (string derived_class_name)
 for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type)
 
size_t get_generator_size ()
 
size_t generator_serialize (unsigned char *blob)
 
- Public Member Functions inherited from SerializableObject
virtual int version () const
 Relevant for serializations.
 
virtual string my_class_name () const
 For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method.
 
virtual void serialized_fields_name (vector< string > &field_names) const
 The names of the serialized fields.
 
virtual void pre_serialization ()
 
virtual void post_deserialization ()
 
virtual size_t get_size ()
 Gets bytes sizes for serializations.
 
virtual size_t serialize (unsigned char *blob)
 Serialiazing object to blob memory. return number ob bytes wrote to memory.
 
virtual size_t deserialize (unsigned char *blob)
 Deserialiazing blob to object. returns number of bytes read.
 
size_t serialize_vec (vector< unsigned char > &blob)
 
size_t deserialize_vec (vector< unsigned char > &blob)
 
virtual size_t serialize (vector< unsigned char > &blob)
 
virtual size_t deserialize (vector< unsigned char > &blob)
 
virtual int read_from_file (const string &fname)
 read and deserialize model
 
virtual int write_to_file (const string &fname)
 serialize model and write to file
 
virtual int read_from_file_unsafe (const string &fname)
 read and deserialize model without checking version number - unsafe read
 
int init_from_string (string init_string)
 Init from string.
 
int init_params_from_file (string init_file)
 
int init_param_from_file (string file_str, string &param)
 
int update_from_string (const string &init_string)
 
virtual int update (map< string, string > &map)
 Virtual to update object from parsed fields.
 
virtual string object_json () const
 

Data Fields

string signalName
 
int signalId
 
int bdateId
 
int genderId
 
BinnedLmEstimatesParams params
 
BinnedLMSamplingStrategy sampling_strategy = BINNED_LM_TAKE_ALL
 
vector< MedLMmodels
 
vector< float > xmeans
 
vector< float > xsdvs
 
vector< float > ymeans
 
vector< float > ysdvs
 
vector< vector< float > > means = { {}, {} }
 
int time_unit_periods = MedTime::Undefined
 the time unit in which the periods are given. Default: Undefined
 
int time_unit_sig = MedTime::Undefined
 the time init in which the signal is given. Default: Undefined
 
int time_channel = 0
 n >= 0 : use time channel n , default: 0.
 
int val_channel = 0
 n >= 0 : use val channel n , default : 0.
 
- Data Fields inherited from FeatureGenerator
FeatureGeneratorTypes generator_type = FTR_GEN_LAST
 Type.
 
vector< string > names
 Feature name.
 
int learn_nthreads = 16
 
int pred_nthreads = 16
 
float missing_val = (float)MED_MAT_MISSING_VALUE
 Missing value.
 
vector< string > tags
 Tags - for defining labels or groups. may be used later for filtering for example.
 
int iGenerateWeights = 0
 Feature/Weights generator.
 
vector< float * > p_data
 
vector< string > req_signals
 
vector< int > req_signal_ids
 
int serial_id
 

Additional Inherited Members

- Static Public Member Functions inherited from FeatureGenerator
static FeatureGeneratormake_generator (string name)
 
static FeatureGeneratormake_generator (string name, string params)
 
static FeatureGeneratormake_generator (FeatureGeneratorTypes type)
 
static FeatureGeneratormake_generator (FeatureGeneratorTypes type, string params)
 
static FeatureGeneratorcreate_generator (string &params)
 

Detailed Description

BinnedLinearModels : Apply a set of liner models to generate features.

Member Function Documentation

◆ _generate()

int BinnedLmEstimates::_generate ( PidDynamicRec rec,
MedFeatures features,
int  index,
int  num,
vector< float * > &  _p_data 
)
virtual

generate new feature(s)

Reimplemented from FeatureGenerator.

◆ _learn()

int BinnedLmEstimates::_learn ( MedPidRepository rep,
const MedSamples samples,
vector< RepProcessor * >  processors 
)
virtual

Learn a generator.

Reimplemented from FeatureGenerator.

◆ copy()

virtual void BinnedLmEstimates::copy ( FeatureGenerator generator)
inlinevirtual

Reimplemented from FeatureGenerator.

◆ dprint()

void BinnedLmEstimates::dprint ( const string &  pref,
int  fg_flag 
)
virtual

Reimplemented from FeatureGenerator.

◆ filter_features()

int BinnedLmEstimates::filter_features ( unordered_set< string > &  validFeatures)
virtual

Filter generated features according to a set. return number of valid features (does not affect single-feature genertors, just returns 1/0 if feature name in set)

Reimplemented from FeatureGenerator.

◆ get_p_data()

void BinnedLmEstimates::get_p_data ( MedFeatures features,
vector< float * > &  _p_data 
)
virtual

Reimplemented from FeatureGenerator.

◆ init()

int BinnedLmEstimates::init ( map< string, string > &  mapper)
virtual

The parsed fields from init command.

if (field == "bin_bounds") {
if (init_dvec(entry.second, params.bin_bounds) == -1) {
fprintf(stderr, "Cannot initialize bin_bounds for LM\n");
return -1;
}
}
else if (field == "max_period") params.max_period = stoi(entry.second);
else if (field == "min_period") params.min_period = stoi(entry.second);
else if (field == "rfactor") params.rfactor = stof(entry.second);
else if (field == "signalName" || field == "signal") signalName = entry.second;
else if (field == "estimation_points") {
if (init_dvec(entry.second, params.estimation_points) == -1) {
fprintf(stderr, "Cannot initialize estimation_points for LM\n");
return -1;
}
}
else if (field == "time_unit") time_unit_periods = med_time_converter.string_to_type(entry.second);
else if (field == "time_channel") time_channel = stoi(entry.second);
else if (field == "val_channel") val_channel = stoi(entry.second);
else if (field == "tags") boost::split(tags, entry.second, boost::is_any_of(","));
else if (field == "sampling") set_sampling_strategy(entry.second);
else if (field == "weights_generator") iGenerateWeights = stoi(entry.second);
else if (field != "fg_type")
MLOG("Unknonw parameter \'%s\' for BinnedLmEstimates\n", field.c_str());
#define MLOG(fmt,...)
MLOG() - use LOCAL_SECTION and LOCAL_LEVEL.
Definition Logger.h:145
int val_channel
n >= 0 : use val channel n , default : 0.
Definition FeatureGenerator.h:570
int time_channel
n >= 0 : use time channel n , default: 0.
Definition FeatureGenerator.h:569
int time_unit_periods
the time unit in which the periods are given. Default: Undefined
Definition FeatureGenerator.h:567
int iGenerateWeights
Feature/Weights generator.
Definition FeatureGenerator.h:72
vector< string > tags
Tags - for defining labels or groups. may be used later for filtering for example.
Definition FeatureGenerator.h:69
int string_to_type(const string &str)
Convert string to type.
Definition MedTime.cpp:358
float stof(const std::string &value, size_t *pos=nullptr)
A faster implementation of stof(). See documentation of std::stof() for more information....
Definition strtonum.h:467

[BinnedLmEstimates::init]

[BinnedLmEstimates::init]

Reimplemented from FeatureGenerator.

◆ init_defaults()

void BinnedLmEstimates::init_defaults ( )
virtual

Reimplemented from FeatureGenerator.

◆ print()

void BinnedLmEstimates::print ( )
virtual

Reimplemented from FeatureGenerator.

◆ set_names()

void BinnedLmEstimates::set_names ( )
virtual

Naming.

Reimplemented from FeatureGenerator.

◆ set_signal_ids()

void BinnedLmEstimates::set_signal_ids ( MedSignals sigs)
virtual

Reimplemented from FeatureGenerator.


The documentation for this class was generated from the following files: