Medial Code Documentation
|
Data Structures | |
class | XGBClassifier |
class | XGBModel |
class | XGBRanker |
class | XGBRankerMixIn |
class | XGBRegressor |
class | XGBRFClassifier |
class | XGBRFRegressor |
Functions | |
None | _check_rf_callback (Optional[int] early_stopping_rounds, Optional[Sequence[TrainingCallback]] callbacks) |
bool | _can_use_qdm (Optional[str] tree_method) |
Objective | _objective_decorator (Callable[[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]] func) |
Metric | _metric_decorator (Callable func) |
Metric | ltr_metric_decorator (Callable func, Optional[int] n_jobs) |
Callable[[Type], Type] | xgboost_model_doc (str header, List[str] items, Optional[str] extra_parameters=None, Optional[str] end_note=None) |
Tuple[Any, List[Tuple[Any, str]]] | _wrap_evaluation_matrices (float missing, Any X, Any y, Optional[Any] group, Optional[Any] qid, Optional[Any] sample_weight, Optional[Any] base_margin, Optional[Any] feature_weights, Optional[Sequence[Tuple[Any, Any]]] eval_set, Optional[Sequence[Any]] sample_weight_eval_set, Optional[Sequence[Any]] base_margin_eval_set, Optional[Sequence[Any]] eval_group, Optional[Sequence[Any]] eval_qid, Callable create_dmatrix, bool enable_categorical, Optional[FeatureTypes] feature_types) |
PredtT | _cls_predict_proba (int n_classes, PredtT prediction, Callable vstack) |
Tuple[ArrayLike, Optional[ArrayLike]] | _get_qid (ArrayLike X, Optional[ArrayLike] qid) |
Variables | |
SklObjective | |
int | DEFAULT_N_ESTIMATORS = 100 |
PredtT = TypeVar("PredtT", bound=np.ndarray) | |
Scikit-Learn Wrapper interface for XGBoost.
|
protected |
Get the special qid column from X if exists.
|
protected |
Decorate a metric function from sklearn. Converts an metric function that uses the typical sklearn metric signature so that it is compatible with :py:func:`train`
|
protected |
Decorate an objective function Converts an objective function using the typical sklearn metrics signature so that it is usable with ``xgboost.training.train`` Parameters ---------- func: Expects a callable with signature ``func(y_true, y_pred)``: y_true: array_like of shape [n_samples] The target values y_pred: array_like of shape [n_samples] The predicted values Returns ------- new_func: The new objective function as expected by ``xgboost.training.train``. The signature is ``new_func(preds, dmatrix)``: preds: array_like, shape [n_samples] The predicted values dmatrix: ``DMatrix`` The training set from which the labels will be extracted using ``dmatrix.get_label()``
|
protected |
Convert array_like evaluation matrices into DMatrix. Perform validation on the way.
Metric xgboost.sklearn.ltr_metric_decorator | ( | Callable | func, |
Optional[int] | n_jobs | ||
) |
Decorate a learning to rank metric.
Callable[[Type], Type] xgboost.sklearn.xgboost_model_doc | ( | str | header, |
List[str] | items, | ||
Optional[str] | extra_parameters = None , |
||
Optional[str] | end_note = None |
||
) |
Obtain documentation for Scikit-Learn wrappers Parameters ---------- header: str An introducion to the class. items : list A list of common doc items. Available items are: - estimators: the meaning of n_estimators - model: All the other parameters - objective: note for customized objective extra_parameters: str Document for class specific parameters, placed at the head. end_note: str Extra notes put to the end.
xgboost.sklearn.SklObjective |