Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Data Fields | Static Public Attributes | Protected Attributes
xgboost.sklearn.XGBClassifier Class Reference
Inheritance diagram for xgboost.sklearn.XGBClassifier:
xgboost.sklearn.XGBModel xgboost.sklearn.XGBRFClassifier

Public Member Functions

None __init__ (self, *SklObjective objective="binary:logistic", **Any kwargs)
 
"XGBClassifier" fit (self, ArrayLike X, ArrayLike y, *Optional[ArrayLike] sample_weight=None, Optional[ArrayLike] base_margin=None, Optional[Sequence[Tuple[ArrayLike, ArrayLike]]] eval_set=None, Optional[Union[str, Sequence[str], Metric]] eval_metric=None, Optional[int] early_stopping_rounds=None, Optional[Union[bool, int]] verbose=True, Optional[Union[Booster, str, XGBModel]] xgb_model=None, Optional[Sequence[ArrayLike]] sample_weight_eval_set=None, Optional[Sequence[ArrayLike]] base_margin_eval_set=None, Optional[ArrayLike] feature_weights=None, Optional[Sequence[TrainingCallback]] callbacks=None)
 
ArrayLike predict (self, ArrayLike X, bool output_margin=False, bool validate_features=True, Optional[ArrayLike] base_margin=None, Optional[Tuple[int, int]] iteration_range=None)
 
np.ndarray predict_proba (self, ArrayLike X, bool validate_features=True, Optional[ArrayLike] base_margin=None, Optional[Tuple[int, int]] iteration_range=None)
 
np.ndarray classes_ (self)
 
- Public Member Functions inherited from xgboost.sklearn.XGBModel
bool __sklearn_is_fitted__ (self)
 
Booster get_booster (self)
 
"XGBModel" set_params (self, **Any params)
 
Dict[str, Any] get_params (self, bool deep=True)
 
Dict[str, Any] get_xgb_params (self)
 
int get_num_boosting_rounds (self)
 
None save_model (self, Union[str, os.PathLike] fname)
 
None load_model (self, ModelIn fname)
 
np.ndarray apply (self, ArrayLike X, Optional[Tuple[int, int]] iteration_range=None)
 
Dict[str, Dict[str, List[float]]] evals_result (self)
 
int n_features_in_ (self)
 
np.ndarray feature_names_in_ (self)
 
float best_score (self)
 
int best_iteration (self)
 
np.ndarray feature_importances_ (self)
 
np.ndarray coef_ (self)
 
np.ndarray intercept_ (self)
 

Data Fields

 n_classes_
 
 objective
 
- Data Fields inherited from xgboost.sklearn.XGBModel
 n_estimators
 
 objective
 
 max_depth
 
 max_leaves
 
 max_bin
 
 grow_policy
 
 learning_rate
 
 verbosity
 
 booster
 
 tree_method
 
 gamma
 
 min_child_weight
 
 max_delta_step
 
 subsample
 
 sampling_method
 
 colsample_bytree
 
 colsample_bylevel
 
 colsample_bynode
 
 reg_alpha
 
 reg_lambda
 
 scale_pos_weight
 
 base_score
 
 missing
 
 num_parallel_tree
 
 random_state
 
 n_jobs
 
 monotone_constraints
 
 interaction_constraints
 
 importance_type
 
 device
 
 validate_parameters
 
 enable_categorical
 
 feature_types
 
 max_cat_to_onehot
 
 max_cat_threshold
 
 multi_strategy
 
 eval_metric
 
 early_stopping_rounds
 
 callbacks
 
 kwargs
 
 n_classes_
 
 evals_result_
 

Static Public Attributes

str extra_parameters
 

Protected Attributes

 _Booster
 
- Protected Attributes inherited from xgboost.sklearn.XGBModel
 _Booster
 

Additional Inherited Members

- Protected Member Functions inherited from xgboost.sklearn.XGBModel
Dict[str, bool] _more_tags (self)
 
str _get_type (self)
 
None _load_model_attributes (self, dict config)
 
Tuple[ Optional[Union[Booster, str, "XGBModel"]], Optional[Metric], Dict[str, Any], Optional[int], Optional[Sequence[TrainingCallback]],] _configure_fit (self, Optional[Union[Booster, "XGBModel", str]] booster, Optional[Union[Callable, str, Sequence[str]]] eval_metric, Dict[str, Any] params, Optional[int] early_stopping_rounds, Optional[Sequence[TrainingCallback]] callbacks)
 
DMatrix _create_dmatrix (self, Optional[DMatrix] ref, **Any kwargs)
 
None _set_evaluation_result (self, TrainingCallback.EvalsLog evals_result)
 
bool _can_use_inplace_predict (self)
 
Tuple[int, int] _get_iteration_range (self, Optional[Tuple[int, int]] iteration_range)
 

Constructor & Destructor Documentation

◆ __init__()

None xgboost.sklearn.XGBClassifier.__init__ (   self,
*SklObjective   objective = "binary:logistic",
**Any  kwargs 
)

Reimplemented from xgboost.sklearn.XGBModel.

Member Function Documentation

◆ fit()

"XGBClassifier" xgboost.sklearn.XGBClassifier.fit (   self,
ArrayLike  X,
ArrayLike  y,
*Optional[ArrayLike]   sample_weight = None,
Optional[ArrayLike]   base_margin = None,
Optional[Sequence[Tuple[ArrayLike, ArrayLike]]]   eval_set = None,
Optional[Union[str, Sequence[str], Metric]]   eval_metric = None,
Optional[int]   early_stopping_rounds = None,
Optional[Union[bool, int]]   verbose = True,
Optional[Union[Booster, str, XGBModel]]   xgb_model = None,
Optional[Sequence[ArrayLike]]   sample_weight_eval_set = None,
Optional[Sequence[ArrayLike]]   base_margin_eval_set = None,
Optional[ArrayLike]   feature_weights = None,
Optional[Sequence[TrainingCallback]]   callbacks = None 
)
Fit gradient boosting model.

Note that calling ``fit()`` multiple times will cause the model object to be
re-fit from scratch. To resume training from a previous checkpoint, explicitly
pass ``xgb_model`` argument.

Parameters
----------
X :
    Feature matrix. See :ref:`py-data` for a list of supported types.

    When the ``tree_method`` is set to ``hist``, internally, the
    :py:class:`QuantileDMatrix` will be used instead of the :py:class:`DMatrix`
    for conserving memory. However, this has performance implications when the
    device of input data is not matched with algorithm. For instance, if the
    input is a numpy array on CPU but ``cuda`` is used for training, then the
    data is first processed on CPU then transferred to GPU.
y :
    Labels
sample_weight :
    instance weights
base_margin :
    global bias for each instance.
eval_set :
    A list of (X, y) tuple pairs to use as validation sets, for which
    metrics will be computed.
    Validation metrics will help us track the performance of the model.

eval_metric : str, list of str, or callable, optional

    .. deprecated:: 1.6.0

    Use `eval_metric` in :py:meth:`__init__` or :py:meth:`set_params` instead.

early_stopping_rounds : int

    .. deprecated:: 1.6.0

    Use `early_stopping_rounds` in :py:meth:`__init__` or :py:meth:`set_params`
    instead.
verbose :
    If `verbose` is True and an evaluation set is used, the evaluation metric
    measured on the validation set is printed to stdout at each boosting stage.
    If `verbose` is an integer, the evaluation metric is printed at each
    `verbose` boosting stage. The last boosting stage / the boosting stage found
    by using `early_stopping_rounds` is also printed.
xgb_model :
    file name of stored XGBoost model or 'Booster' instance XGBoost model to be
    loaded before training (allows training continuation).
sample_weight_eval_set :
    A list of the form [L_1, L_2, ..., L_n], where each L_i is an array like
    object storing instance weights for the i-th validation set.
base_margin_eval_set :
    A list of the form [M_1, M_2, ..., M_n], where each M_i is an array like
    object storing base margin for the i-th validation set.
feature_weights :
    Weight for each feature, defines the probability of each feature being
    selected when colsample is being used.  All values must be greater than 0,
    otherwise a `ValueError` is thrown.

callbacks :
    .. deprecated:: 1.6.0
        Use `callbacks` in :py:meth:`__init__` or :py:meth:`set_params` instead.

Reimplemented from xgboost.sklearn.XGBModel.

Reimplemented in xgboost.sklearn.XGBRFClassifier.

◆ predict()

ArrayLike xgboost.sklearn.XGBClassifier.predict (   self,
ArrayLike  X,
bool   output_margin = False,
bool   validate_features = True,
Optional[ArrayLike]   base_margin = None,
Optional[Tuple[int, int]]   iteration_range = None 
)
Predict with `X`.  If the model is trained with early stopping, then
:py:attr:`best_iteration` is used automatically. The estimator uses
`inplace_predict` by default and falls back to using :py:class:`DMatrix` if
devices between the data and the estimator don't match.

.. note:: This function is only thread safe for `gbtree` and `dart`.

Parameters
----------
X :
    Data to predict with.
output_margin :
    Whether to output the raw untransformed margin value.
validate_features :
    When this is True, validate that the Booster's and data's feature_names are
    identical.  Otherwise, it is assumed that the feature_names are the same.
base_margin :
    Margin added to prediction.
iteration_range :
    Specifies which layer of trees are used in prediction.  For example, if a
    random forest is trained with 100 rounds.  Specifying ``iteration_range=(10,
    20)``, then only the forests built during [10, 20) (half open set) rounds
    are used in this prediction.

    .. versionadded:: 1.4.0

Returns
-------
prediction

Reimplemented from xgboost.sklearn.XGBModel.

◆ predict_proba()

np.ndarray xgboost.sklearn.XGBClassifier.predict_proba (   self,
ArrayLike  X,
bool   validate_features = True,
Optional[ArrayLike]   base_margin = None,
Optional[Tuple[int, int]]   iteration_range = None 
)
Predict the probability of each `X` example being of a given class. If the
model is trained with early stopping, then :py:attr:`best_iteration` is used
automatically. The estimator uses `inplace_predict` by default and falls back to
using :py:class:`DMatrix` if devices between the data and the estimator don't
match.

.. note:: This function is only thread safe for `gbtree` and `dart`.

Parameters
----------
X :
    Feature matrix. See :ref:`py-data` for a list of supported types.
validate_features :
    When this is True, validate that the Booster's and data's feature_names are
    identical.  Otherwise, it is assumed that the feature_names are the same.
base_margin :
    Margin added to prediction.
iteration_range :
    Specifies which layer of trees are used in prediction.  For example, if a
    random forest is trained with 100 rounds.  Specifying `iteration_range=(10,
    20)`, then only the forests built during [10, 20) (half open set) rounds are
    used in this prediction.

Returns
-------
prediction :
    a numpy array of shape array-like of shape (n_samples, n_classes) with the
    probability of each data example being of a given class.

Field Documentation

◆ extra_parameters

str xgboost.sklearn.XGBClassifier.extra_parameters
static
Initial value:
= """
n_estimators : Optional[int]
Number of trees in random forest to fit.
""",

The documentation for this class was generated from the following file: