|
None | __init__ (self, *SklObjective objective="reg:squarederror", **Any kwargs) |
|
bool | __sklearn_is_fitted__ (self) |
|
Booster | get_booster (self) |
|
"XGBModel" | set_params (self, **Any params) |
|
Dict[str, Any] | get_params (self, bool deep=True) |
|
Dict[str, Any] | get_xgb_params (self) |
|
int | get_num_boosting_rounds (self) |
|
None | save_model (self, Union[str, os.PathLike] fname) |
|
None | load_model (self, ModelIn fname) |
|
"XGBModel" | fit (self, ArrayLike X, ArrayLike y, *Optional[ArrayLike] sample_weight=None, Optional[ArrayLike] base_margin=None, Optional[Sequence[Tuple[ArrayLike, ArrayLike]]] eval_set=None, Optional[Union[str, Sequence[str], Metric]] eval_metric=None, Optional[int] early_stopping_rounds=None, Optional[Union[bool, int]] verbose=True, Optional[Union[Booster, str, "XGBModel"]] xgb_model=None, Optional[Sequence[ArrayLike]] sample_weight_eval_set=None, Optional[Sequence[ArrayLike]] base_margin_eval_set=None, Optional[ArrayLike] feature_weights=None, Optional[Sequence[TrainingCallback]] callbacks=None) |
|
ArrayLike | predict (self, ArrayLike X, bool output_margin=False, bool validate_features=True, Optional[ArrayLike] base_margin=None, Optional[Tuple[int, int]] iteration_range=None) |
|
np.ndarray | apply (self, ArrayLike X, Optional[Tuple[int, int]] iteration_range=None) |
|
Dict[str, Dict[str, List[float]]] | evals_result (self) |
|
int | n_features_in_ (self) |
|
np.ndarray | feature_names_in_ (self) |
|
float | best_score (self) |
|
int | best_iteration (self) |
|
np.ndarray | feature_importances_ (self) |
|
np.ndarray | coef_ (self) |
|
np.ndarray | intercept_ (self) |
|
|
| n_estimators |
|
| objective |
|
| max_depth |
|
| max_leaves |
|
| max_bin |
|
| grow_policy |
|
| learning_rate |
|
| verbosity |
|
| booster |
|
| tree_method |
|
| gamma |
|
| min_child_weight |
|
| max_delta_step |
|
| subsample |
|
| sampling_method |
|
| colsample_bytree |
|
| colsample_bylevel |
|
| colsample_bynode |
|
| reg_alpha |
|
| reg_lambda |
|
| scale_pos_weight |
|
| base_score |
|
| missing |
|
| num_parallel_tree |
|
| random_state |
|
| n_jobs |
|
| monotone_constraints |
|
| interaction_constraints |
|
| importance_type |
|
| device |
|
| validate_parameters |
|
| enable_categorical |
|
| feature_types |
|
| max_cat_to_onehot |
|
| max_cat_threshold |
|
| multi_strategy |
|
| eval_metric |
|
| early_stopping_rounds |
|
| callbacks |
|
| kwargs |
|
| n_classes_ |
|
| evals_result_ |
|
Dict[str, bool] | _more_tags (self) |
|
str | _get_type (self) |
|
None | _load_model_attributes (self, dict config) |
|
Tuple[ Optional[Union[Booster, str, "XGBModel"]], Optional[Metric], Dict[str, Any], Optional[int], Optional[Sequence[TrainingCallback]],] | _configure_fit (self, Optional[Union[Booster, "XGBModel", str]] booster, Optional[Union[Callable, str, Sequence[str]]] eval_metric, Dict[str, Any] params, Optional[int] early_stopping_rounds, Optional[Sequence[TrainingCallback]] callbacks) |
|
DMatrix | _create_dmatrix (self, Optional[DMatrix] ref, **Any kwargs) |
|
None | _set_evaluation_result (self, TrainingCallback.EvalsLog evals_result) |
|
bool | _can_use_inplace_predict (self) |
|
Tuple[int, int] | _get_iteration_range (self, Optional[Tuple[int, int]] iteration_range) |
|
| _Booster |
|