Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Static Public Attributes
xgboost.sklearn.XGBRegressor Class Reference
Inheritance diagram for xgboost.sklearn.XGBRegressor:
xgboost.sklearn.XGBModel xgboost.sklearn.XGBRFRegressor

Public Member Functions

None __init__ (self, *SklObjective objective="reg:squarederror", **Any kwargs)
 
- Public Member Functions inherited from xgboost.sklearn.XGBModel
bool __sklearn_is_fitted__ (self)
 
Booster get_booster (self)
 
"XGBModel" set_params (self, **Any params)
 
Dict[str, Any] get_params (self, bool deep=True)
 
Dict[str, Any] get_xgb_params (self)
 
int get_num_boosting_rounds (self)
 
None save_model (self, Union[str, os.PathLike] fname)
 
None load_model (self, ModelIn fname)
 
"XGBModel" fit (self, ArrayLike X, ArrayLike y, *Optional[ArrayLike] sample_weight=None, Optional[ArrayLike] base_margin=None, Optional[Sequence[Tuple[ArrayLike, ArrayLike]]] eval_set=None, Optional[Union[str, Sequence[str], Metric]] eval_metric=None, Optional[int] early_stopping_rounds=None, Optional[Union[bool, int]] verbose=True, Optional[Union[Booster, str, "XGBModel"]] xgb_model=None, Optional[Sequence[ArrayLike]] sample_weight_eval_set=None, Optional[Sequence[ArrayLike]] base_margin_eval_set=None, Optional[ArrayLike] feature_weights=None, Optional[Sequence[TrainingCallback]] callbacks=None)
 
ArrayLike predict (self, ArrayLike X, bool output_margin=False, bool validate_features=True, Optional[ArrayLike] base_margin=None, Optional[Tuple[int, int]] iteration_range=None)
 
np.ndarray apply (self, ArrayLike X, Optional[Tuple[int, int]] iteration_range=None)
 
Dict[str, Dict[str, List[float]]] evals_result (self)
 
int n_features_in_ (self)
 
np.ndarray feature_names_in_ (self)
 
float best_score (self)
 
int best_iteration (self)
 
np.ndarray feature_importances_ (self)
 
np.ndarray coef_ (self)
 
np.ndarray intercept_ (self)
 

Static Public Attributes

str extra_parameters
 

Additional Inherited Members

- Data Fields inherited from xgboost.sklearn.XGBModel
 n_estimators
 
 objective
 
 max_depth
 
 max_leaves
 
 max_bin
 
 grow_policy
 
 learning_rate
 
 verbosity
 
 booster
 
 tree_method
 
 gamma
 
 min_child_weight
 
 max_delta_step
 
 subsample
 
 sampling_method
 
 colsample_bytree
 
 colsample_bylevel
 
 colsample_bynode
 
 reg_alpha
 
 reg_lambda
 
 scale_pos_weight
 
 base_score
 
 missing
 
 num_parallel_tree
 
 random_state
 
 n_jobs
 
 monotone_constraints
 
 interaction_constraints
 
 importance_type
 
 device
 
 validate_parameters
 
 enable_categorical
 
 feature_types
 
 max_cat_to_onehot
 
 max_cat_threshold
 
 multi_strategy
 
 eval_metric
 
 early_stopping_rounds
 
 callbacks
 
 kwargs
 
 n_classes_
 
 evals_result_
 
- Protected Member Functions inherited from xgboost.sklearn.XGBModel
Dict[str, bool] _more_tags (self)
 
str _get_type (self)
 
None _load_model_attributes (self, dict config)
 
Tuple[ Optional[Union[Booster, str, "XGBModel"]], Optional[Metric], Dict[str, Any], Optional[int], Optional[Sequence[TrainingCallback]],] _configure_fit (self, Optional[Union[Booster, "XGBModel", str]] booster, Optional[Union[Callable, str, Sequence[str]]] eval_metric, Dict[str, Any] params, Optional[int] early_stopping_rounds, Optional[Sequence[TrainingCallback]] callbacks)
 
DMatrix _create_dmatrix (self, Optional[DMatrix] ref, **Any kwargs)
 
None _set_evaluation_result (self, TrainingCallback.EvalsLog evals_result)
 
bool _can_use_inplace_predict (self)
 
Tuple[int, int] _get_iteration_range (self, Optional[Tuple[int, int]] iteration_range)
 
- Protected Attributes inherited from xgboost.sklearn.XGBModel
 _Booster
 

Constructor & Destructor Documentation

◆ __init__()

None xgboost.sklearn.XGBRegressor.__init__ (   self,
*SklObjective   objective = "reg:squarederror",
**Any   kwargs 
)

Reimplemented from xgboost.sklearn.XGBModel.

Field Documentation

◆ extra_parameters

str xgboost.sklearn.XGBRegressor.extra_parameters
static
Initial value:
= """
n_estimators : Optional[int]
Number of trees in random forest to fit.
""",

The documentation for this class was generated from the following file: