|
|
| CompressedStorage (Index size) |
| |
|
| CompressedStorage (const CompressedStorage &other) |
| |
|
CompressedStorage & | operator= (const CompressedStorage &other) |
| |
|
void | swap (CompressedStorage &other) |
| |
|
void | reserve (Index size) |
| |
|
void | squeeze () |
| |
|
void | resize (Index size, double reserveSizeFactor=0) |
| |
|
void | append (const Scalar &v, Index i) |
| |
|
Index | size () const |
| |
|
Index | allocatedSize () const |
| |
|
void | clear () |
| |
|
const Scalar * | valuePtr () const |
| |
|
Scalar * | valuePtr () |
| |
|
const StorageIndex * | indexPtr () const |
| |
|
StorageIndex * | indexPtr () |
| |
|
Scalar & | value (Index i) |
| |
|
const Scalar & | value (Index i) const |
| |
|
StorageIndex & | index (Index i) |
| |
|
const StorageIndex & | index (Index i) const |
| |
| Index | searchLowerIndex (Index key) const |
| |
| Index | searchLowerIndex (Index start, Index end, Index key) const |
| |
| Scalar | at (Index key, const Scalar &defaultValue=Scalar(0)) const |
| |
|
Scalar | atInRange (Index start, Index end, Index key, const Scalar &defaultValue=Scalar(0)) const |
| | Like at(), but the search is performed in the range [start,end)
|
| |
| Scalar & | atWithInsertion (Index key, const Scalar &defaultValue=Scalar(0)) |
| |
|
void | moveChunk (Index from, Index to, Index chunkSize) |
| |
|
void | prune (const Scalar &reference, const RealScalar &epsilon=NumTraits< RealScalar >::dummy_precision()) |
| |
|
|
Scalar * | m_values |
| |
|
StorageIndex * | m_indices |
| |
|
Index | m_size |
| |
|
Index | m_allocatedSize |
| |
◆ at()
- Returns
- the stored value at index key If the value does not exist, then the value defaultValue is returned without any insertion.
◆ atWithInsertion()
- Returns
- a reference to the value at index key If the value does not exist, then the value defaultValue is inserted such that the keys are sorted.
◆ searchLowerIndex() [1/2]
- Returns
- the largest
k such that for all j in [0,k) index[j]<key
◆ searchLowerIndex() [2/2]
- Returns
- the largest
k in [start,end) such that for all j in [start,k) index[j]<key
The documentation for this class was generated from the following file: