|
| DMLC_REGISTER_PARAMETER (MyLogisticParam) |
|
| describe ("User defined logistic regression plugin") .set_body([]() |
|
float | SigmoidOneAPI (float x) |
| calculate the sigmoid of the input.
|
|
| DMLC_REGISTRY_FILE_TAG (regression_obj_oneapi) |
|
| DMLC_REGISTER_PARAMETER (RegLossParamOneAPI) |
|
| describe ("Regression with squared error with DPC++ backend.") .set_body([]() |
|
| describe ("Regression with root mean squared logarithmic error with DPC++ backend.") .set_body([]() |
|
| describe ("Logistic regression for probability regression task with DPC++ backend.") .set_body([]() |
|
| describe ("Logistic regression for binary classification task with DPC++ backend.") .set_body([]() |
|
| describe ("Logistic regression for classification, output score " "before logistic transformation with DPC++ backend.") .set_body([]() |
|
void | UpdateTreeLeaf (Context const *ctx, HostDeviceVector< bst_node_t > const &position, std::int32_t group_idx, MetaInfo const &info, float learning_rate, HostDeviceVector< float > const &predt, float alpha, RegTree *p_tree) |
|
| DMLC_REGISTRY_FILE_TAG (aft_obj) |
|
| DMLC_REGISTRY_FILE_TAG (hinge_obj) |
|
void | CheckInitInputs (MetaInfo const &info) |
|
| describe ("LambdaRank with NDCG loss as objective") .set_body([]() |
|
| describe ("LambdaRank with RankNet loss as objective") .set_body([]() |
|
| describe ("LambdaRank with MAP loss as objective.") .set_body([]() |
|
| DMLC_REGISTRY_FILE_TAG (lambdarank_obj) |
|
double constexpr | Eps64 () |
|
template<bool exp> |
XGBOOST_DEVICE double | DeltaNDCG (float y_high, float y_low, std::size_t rank_high, std::size_t rank_low, double inv_IDCG, common::Span< double const > discount) |
|
XGBOOST_DEVICE double | DeltaMAP (float y_high, float y_low, std::size_t rank_high, std::size_t rank_low, common::Span< double const > n_rel, common::Span< double const > acc) |
|
template<bool unbiased, typename Delta > |
XGBOOST_DEVICE GradientPair | LambdaGrad (linalg::VectorView< float const > labels, common::Span< float const > predts, common::Span< size_t const > sorted_idx, std::size_t rank_high, std::size_t rank_low, Delta delta, linalg::VectorView< double const > t_plus, linalg::VectorView< double const > t_minus, double *p_cost) |
|
XGBOOST_DEVICE GradientPair | Repulse (GradientPair pg) |
|
template<typename Op > |
void | MakePairs (Context const *ctx, std::int32_t iter, std::shared_ptr< ltr::RankingCache > const cache, bst_group_t g, linalg::VectorView< float const > g_label, common::Span< std::size_t const > g_rank, Op op) |
|
| DMLC_REGISTRY_FILE_TAG (multiclass_obj) |
|
| DMLC_REGISTRY_LINK_TAG (regression_obj) |
|
| DMLC_REGISTRY_LINK_TAG (quantile_obj) |
|
| DMLC_REGISTRY_LINK_TAG (hinge_obj) |
|
| DMLC_REGISTRY_LINK_TAG (multiclass_obj) |
|
| DMLC_REGISTRY_LINK_TAG (lambdarank_obj) |
|
| DMLC_REGISTRY_FILE_TAG (quantile_obj) |
|
| DMLC_REGISTRY_FILE_TAG (regression_obj) |
|
| TEST (LambdaRank, NDCGJsonIO) |
|
void | TestNDCGGPair (Context const *ctx) |
|
| TEST (LambdaRank, NDCGGPair) |
|
void | TestUnbiasedNDCG (Context const *ctx) |
|
| TEST (LambdaRank, UnbiasedNDCG) |
|
void | InitMakePairTest (Context const *ctx, MetaInfo *out_info, HostDeviceVector< float > *out_predt) |
| Initialize test data for make pair tests.
|
|
| TEST (LambdaRank, MakePair) |
|
void | TestMAPStat (Context const *ctx) |
|
| TEST (LambdaRank, MAPStat) |
|
void | TestMAPGPair (Context const *ctx) |
|
| TEST (LambdaRank, MAPGPair) |
|
void | TestPairWiseGPair (Context const *ctx) |
|
| TEST (LambdaRank, Pairwise) |
|
void | TestNDCGJsonIO (Context const *ctx) |
|
Copyright 2022-2023 by XGBoost contributors.
Copyright (c) 2023, XGBoost Contributors.
Copyright 2023 by XGBoost Contributors.
Copyright 2023, XGBoost contributors.
Copyright (c) 2023, XGBoost contributors.
Vocabulary explanation:
There are two different lists we need to handle in the objective, first is the list of labels (relevance degree) provided by the user. Its order has no particular meaning when bias estimation is NOT used. Another one is generated by our model, sorted index based on prediction scores. rank_high
refers to the position index of the model rank list that is higher than rank_low
, while idx_high
refers to where does the rank_high
sample comes from. Simply put, rank_high
indexes into the rank list obtained from the model, while idx_high
indexes into the user provided sample list.