|
| MetaInfo ()=default |
| default constructor
|
|
| MetaInfo (MetaInfo &&that)=default |
|
MetaInfo & | operator= (MetaInfo &&that)=default |
|
MetaInfo & | operator= (MetaInfo const &that)=delete |
|
void | Validate (int32_t device) const |
| Validate all metainfo.
|
|
MetaInfo | Slice (common::Span< int32_t const > ridxs) const |
|
MetaInfo | Copy () const |
|
bst_float | GetWeight (size_t i) const |
| Get weight of each instances.
|
|
const std::vector< size_t > & | LabelAbsSort (Context const *ctx) const |
| get sorted indexes (argsort) of labels by absolute value (used by cox loss)
|
|
void | Clear () |
| clear all the information
|
|
void | LoadBinary (dmlc::Stream *fi) |
| Load the Meta info from binary stream.
|
|
void | SaveBinary (dmlc::Stream *fo) const |
| Save the Meta info to binary stream.
|
|
void | SetInfo (Context const &ctx, const char *key, const void *dptr, DataType dtype, size_t num) |
| Set information in the meta info.
|
|
void | SetInfo (Context const &ctx, StringView key, StringView interface_str) |
| Set information in the meta info with array interface.
|
|
void | GetInfo (char const *key, bst_ulong *out_len, DataType dtype, const void **out_dptr) const |
|
void | SetFeatureInfo (const char *key, const char **info, const bst_ulong size) |
|
void | GetFeatureInfo (const char *field, std::vector< std::string > *out_str_vecs) const |
|
void | Extend (MetaInfo const &that, bool accumulate_rows, bool check_column) |
|
void | SynchronizeNumberOfColumns () |
| Synchronize the number of columns across all workers.
|
|
bool | IsRowSplit () const |
| Whether the data is split row-wise.
|
|
bool | IsColumnSplit () const |
| Whether the data is split column-wise.
|
|
bool | IsRanking () const |
| Whether this is a learning to rank data.
|
|
bool | IsVerticalFederated () const |
| A convenient method to check if we are doing vertical federated learning, which requires some special processing.
|
|
bool | ShouldHaveLabels () const |
| A convenient method to check if the MetaInfo should contain labels.
|
|
|
uint64_t | num_row_ {0} |
| number of rows in the data
|
|
uint64_t | num_col_ {0} |
| number of columns in the data
|
|
uint64_t | num_nonzero_ {0} |
| number of nonzero entries in the data
|
|
linalg::Tensor< float, 2 > | labels |
| label of each instance
|
|
DataSplitMode | data_split_mode {DataSplitMode::kRow} |
| data split mode
|
|
std::vector< bst_group_t > | group_ptr_ |
| the index of begin and end of a group needed when the learning task is ranking.
|
|
HostDeviceVector< bst_float > | weights_ |
| weights of each instance, optional
|
|
linalg::Tensor< float, 2 > | base_margin_ |
| initialized margins, if specified, xgboost will start from this init margin can be used to specify initial prediction to boost from.
|
|
HostDeviceVector< bst_float > | labels_lower_bound_ |
| lower bound of the label, to be used for survival analysis (censored regression)
|
|
HostDeviceVector< bst_float > | labels_upper_bound_ |
| upper bound of the label, to be used for survival analysis (censored regression)
|
|
std::vector< std::string > | feature_type_names |
| Name of type for each feature provided by users. Eg. "int"/"float"/"i"/"q".
|
|
std::vector< std::string > | feature_names |
| Name for each feature.
|
|
HostDeviceVector< FeatureType > | feature_types |
|
HostDeviceVector< float > | feature_weights |
|
Meta information about dataset, always sit in memory.