Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Static Public Member Functions
xgboost::obj::LambdaRankMAP Class Reference
Inheritance diagram for xgboost::obj::LambdaRankMAP:
xgboost::obj::LambdaRankObj< LambdaRankMAP, ltr::MAPCache > xgboost::obj::FitIntercept xgboost::ObjFunction xgboost::Configurable

Public Member Functions

void GetGradientImpl (std::int32_t iter, const HostDeviceVector< float > &predt, const MetaInfo &info, HostDeviceVector< GradientPair > *out_gpair)
 
const char * DefaultEvalMetric () const override
 
- Public Member Functions inherited from xgboost::obj::LambdaRankObj< LambdaRankMAP, ltr::MAPCache >
void Configure (Args const &args) override
 Configure the objective with the specified parameters.
 
void SaveConfig (Json *p_out) const override
 Save configuration to JSON object.
 
void LoadConfig (Json const &in) override
 Load configuration from JSON object.
 
ObjInfo Task () const override
 Return task of this objective.
 
bst_target_t Targets (MetaInfo const &info) const override
 Return number of targets for input matrix.
 
const char * RankEvalMetric (StringView metric) const
 
void GetGradient (HostDeviceVector< float > const &predt, MetaInfo const &info, std::int32_t iter, HostDeviceVector< GradientPair > *out_gpair) override
 
- Public Member Functions inherited from xgboost::ObjFunction
 ~ObjFunction () override=default
 virtual destructor
 
virtual void GetGradient (const HostDeviceVector< bst_float > &preds, const MetaInfo &info, int iteration, HostDeviceVector< GradientPair > *out_gpair)=0
 Get gradient over each of predictions, given existing information.
 
virtual Json DefaultMetricConfig () const
 Return the configuration for the default metric.
 
virtual void PredTransform (HostDeviceVector< bst_float > *) const
 transform prediction values, this is only called when Prediction is called
 
virtual void EvalTransform (HostDeviceVector< bst_float > *io_preds)
 transform prediction values, this is only called when Eval is called, usually it redirect to PredTransform
 
virtual bst_float ProbToMargin (bst_float base_score) const
 transform probability value back to margin this is used to transform user-set base_score back to margin used by gradient boosting
 
virtual void InitEstimation (MetaInfo const &info, linalg::Tensor< float, 1 > *base_score) const
 Make initialize estimation of prediction.
 
virtual void UpdateTreeLeaf (HostDeviceVector< bst_node_t > const &, MetaInfo const &, float, HostDeviceVector< float > const &, std::int32_t, RegTree *) const
 Update the leaf values after a tree is built.
 

Static Public Member Functions

static char const * Name ()
 
- Static Public Member Functions inherited from xgboost::ObjFunction
static constexpr float DefaultBaseScore ()
 
static ObjFunctionCreate (const std::string &name, Context const *ctx)
 Create an objective function according to name.
 

Additional Inherited Members

- Protected Member Functions inherited from xgboost::obj::LambdaRankObj< LambdaRankMAP, ltr::MAPCache >
std::shared_ptr< ltr::MAPCacheGetCache () const
 
linalg::VectorView< double > GroupLoss (bst_group_t g, linalg::Vector< double > *v) const
 
void CalcLambdaForGroup (std::int32_t iter, common::Span< float const > g_predt, linalg::VectorView< float const > g_label, float w, common::Span< std::size_t const > g_rank, bst_group_t g, Delta delta, common::Span< GradientPair > g_gpair)
 
- Protected Attributes inherited from xgboost::obj::LambdaRankObj< LambdaRankMAP, ltr::MAPCache >
linalg::Vector< double > li_
 
linalg::Vector< double > lj_
 
linalg::Vector< double > ti_plus_
 
linalg::Vector< double > tj_minus_
 
linalg::Vector< double > li_full_
 
linalg::Vector< double > lj_full_
 
ltr::LambdaRankParam param_
 
std::shared_ptr< ltr::RankingCachep_cache_
 
- Protected Attributes inherited from xgboost::ObjFunction
Context const * ctx_
 

Member Function Documentation

◆ DefaultEvalMetric()

const char * xgboost::obj::LambdaRankMAP::DefaultEvalMetric ( ) const
inlineoverridevirtual
Returns
the default evaluation metric for the objective

Implements xgboost::ObjFunction.


The documentation for this class was generated from the following file: