|
class | Application |
| The main entrance of LightGBM. this application has two tasks: Train and Predict. Train task will train a new model Predict task will predict the scores of test data using existing model, and save the score to disk. More...
|
|
class | ArrayArgs |
| Contains some operation for a array, e.g. ArgMax, TopK. More...
|
|
class | AUCMetric |
| Auc Metric for binary classification task. More...
|
|
class | Bin |
| Interface for bin data. This class will store bin data for one feature. unlike OrderedBin, this class will store data by original order. Note that it may cause cache misses when construct histogram, but it doesn't need to re-order operation, So it will be faster than OrderedBin for dense feature. More...
|
|
class | BinaryErrorMetric |
| Error rate metric for binary classification task. More...
|
|
class | BinaryLogloss |
| Objective function for binary classification. More...
|
|
class | BinaryLoglossMetric |
| Log loss metric for binary classification task. More...
|
|
class | BinaryMetric |
| Metric for binary classification task. Use static class "PointWiseLossCalculator" to calculate loss point-wise. More...
|
|
class | BinIterator |
| Iterator for one bin column. More...
|
|
class | BinMapper |
| This class used to convert feature values into bin, and store some meta information for bin. More...
|
|
class | Booster |
|
class | Boosting |
| The interface for Boosting. More...
|
|
class | BruckMap |
| The network structure for all_gather. More...
|
|
struct | Config |
|
class | CrossEntropy |
| Objective function for cross-entropy (with optional linear weights) More...
|
|
class | CrossEntropyLambda |
| Objective function for alternative parameterization of cross-entropy (see top of file for explanation) More...
|
|
class | CrossEntropyLambdaMetric |
|
class | CrossEntropyMetric |
|
class | CSVParser |
|
class | DART |
| DART algorithm implementation. including Training, prediction, bagging. More...
|
|
class | DataParallelTreeLearner |
| Data parallel learning algorithm. Workers use local data to construct histograms locally, then sync up global histograms. It is recommonded used when data is large or #feature is small. More...
|
|
class | DataPartition |
| DataPartition is used to store the the partition of data on tree. More...
|
|
class | Dataset |
| The main class of data set, which are used to traning or validation. More...
|
|
class | DatasetLoader |
|
class | DCGCalculator |
| Static class, used to calculate DCG score. More...
|
|
class | Dense4bitsBin |
|
class | Dense4bitsBinIterator |
|
class | DenseBin |
| Used to store bins for dense feature Use template to reduce memory cost. More...
|
|
class | DenseBinIterator |
|
class | FairLossMetric |
| Fair loss for regression task. More...
|
|
class | FeatureGroup |
| Using to store data and providing some operations on one feature group. More...
|
|
class | FeatureHistogram |
| FeatureHistogram is used to construct and store a histogram for a feature. More...
|
|
class | FeatureMetainfo |
|
class | FeatureParallelTreeLearner |
| Feature parallel learning algorithm. Different machine will find best split on different features, then sync global best split It is recommonded used when data is small or #feature is large. More...
|
|
class | GammaDevianceMetric |
|
class | GammaMetric |
|
class | GBDT |
| GBDT algorithm implementation. including Training, prediction, bagging. More...
|
|
class | GBDT_Accessor |
|
class | GBDTBase |
|
class | GOSS |
|
class | GPUTreeLearner |
|
struct | HistogramBinEntry |
| Store data for one histogram bin. More...
|
|
class | HistogramPool |
|
class | HuberLossMetric |
| Huber loss for regression task. More...
|
|
class | KullbackLeiblerDivergence |
|
class | L1Metric |
| L1 loss for regression task. More...
|
|
class | L2Metric |
| L2 loss for regression task. More...
|
|
class | LambdarankNDCG |
| Objective function for Lambdrank with NDCG. More...
|
|
class | LeafSplits |
| used to find split candidates for a leaf More...
|
|
class | LibSVMParser |
|
struct | LightSplitInfo |
|
class | Linkers |
| An network basic communication warpper. Will warp low level communication methods, e.g. mpi, socket and so on. This class will wrap all linkers to other machines if needs. More...
|
|
struct | LocalFile |
|
class | Log |
| A static Log class. More...
|
|
class | MAPEMetric |
| Mape regression loss for regression task. More...
|
|
class | MapMetric |
|
class | MemApp |
|
class | Metadata |
| This class is used to store some meta(non-feature) data for training data, e.g. labels, weights, initial scores, qurey level informations. More...
|
|
class | Metric |
| The interface of metric. Metric is used to calculate metric result. More...
|
|
class | MulticlassMetric |
| Metric for multiclass task. Use static class "PointWiseLossCalculator" to calculate loss point-wise. More...
|
|
class | MulticlassOVA |
| Objective function for multiclass classification, use one-vs-all binary objective function. More...
|
|
class | MulticlassSoftmax |
| Objective function for multiclass classification, use softmax as objective functions. More...
|
|
class | MultiErrorMetric |
| L2 loss for multiclass task. More...
|
|
class | MultiSoftmaxLoglossMetric |
| Logloss for multiclass task. More...
|
|
class | NDCGMetric |
|
class | Network |
| A static class that contains some collective communication algorithm. More...
|
|
class | ObjectiveFunction |
| The interface of Objective Function. More...
|
|
class | OrderedBin |
| Interface for ordered bin data. efficient for construct histogram, especially for sparse bin There are 2 advantages by using ordered bin. More...
|
|
class | OrderedSparseBin |
| Interface for ordered bin data. efficient for construct histogram, especially for sparse bin There are 2 advantages by using ordered bin. More...
|
|
struct | ParameterAlias |
|
class | Parser |
| Interface for Parser. More...
|
|
class | PipelineReader |
| A pipeline file reader, use 2 threads, one read block from file, the other process the block. More...
|
|
class | PoissonMetric |
| Poisson regression loss for regression task. More...
|
|
struct | PredictionEarlyStopConfig |
|
struct | PredictionEarlyStopInstance |
|
class | Predictor |
| Used to predict data with input model. More...
|
|
class | QuantileMetric |
| L2 loss for regression task. More...
|
|
class | Random |
| A wrapper for random generator. More...
|
|
class | RecursiveHalvingMap |
| Network structure for recursive halving algorithm. More...
|
|
class | RegressionFairLoss |
|
class | RegressionGammaLoss |
| Objective function for Gamma regression. More...
|
|
class | RegressionHuberLoss |
| Huber regression loss. More...
|
|
class | RegressionL1loss |
| L1 regression loss. More...
|
|
class | RegressionL2loss |
| Objective function for regression. More...
|
|
class | RegressionMAPELOSS |
| Mape Regression Loss. More...
|
|
class | RegressionMetric |
| Metric for regression task. Use static class "PointWiseLossCalculator" to calculate loss point-wise. More...
|
|
class | RegressionPoissonLoss |
| Objective function for Poisson regression. More...
|
|
class | RegressionQuantileloss |
|
class | RegressionTweedieLoss |
| Objective function for Tweedie regression. More...
|
|
class | RF |
| Rondom Forest implementation. More...
|
|
class | RMSEMetric |
| RMSE loss for regression task. More...
|
|
class | ScoreUpdater |
| Used to store and update score for data. More...
|
|
class | SerialTreeLearner |
| Used for learning a tree by single machine. More...
|
|
class | SparseBin |
|
class | SparseBinIterator |
|
struct | SplitInfo |
| Used to store some information for gain split point. More...
|
|
class | TextReader |
| Read text data from file. More...
|
|
class | Threading |
|
class | Tree |
| Tree model. More...
|
|
class | TreeLearner |
| Interface for tree learner. More...
|
|
class | TSVParser |
|
class | TweedieMetric |
|
struct | VirtualFileReader |
| An interface for reading files into buffers. More...
|
|
struct | VirtualFileWriter |
| An interface for writing files from buffers. More...
|
|
class | VotingParallelTreeLearner |
| Voting based data parallel learning algorithm. Like data parallel, but not aggregate histograms for all features. Here using voting to reduce features, and only aggregate histograms for selected features. When data is large and #feature is large, you can use this to have better speed-up. More...
|
|
|
typedef int32_t | data_size_t |
| Type of data size, it is better to use signed type.
|
|
typedef float | score_t |
| Type of score, and gradients.
|
|
typedef float | label_t |
| Type of metadata, include weight and label.
|
|
typedef int32_t | comm_size_t |
|
using | PredictFunction = std::function< void(const std::vector< std::pair< int, double > > &, double *output)> |
|
typedef void(* | ReduceFunction) (const char *input, char *output, int type_size, comm_size_t array_size) |
|
typedef void(* | ReduceScatterFunction) (char *input, comm_size_t input_size, int type_size, const comm_size_t *block_start, const comm_size_t *block_len, int num_block, char *output, comm_size_t output_size, const ReduceFunction &reducer) |
|
typedef void(* | AllgatherFunction) (char *input, comm_size_t input_size, const comm_size_t *block_start, const comm_size_t *block_len, int num_block, char *output, comm_size_t output_size) |
|
|
enum | BinType { NumericalBin
, CategoricalBin
} |
|
enum | MissingType { None
, Zero
, NaN
} |
|
enum | TaskType { kTrain
, kPredict
, kConvertModel
, KRefitTree
} |
| Types of tasks.
|
|
enum | RecursiveHalvingNodeType { Normal
, GroupLeader
, Other
} |
| node type on recursive halving algorithm When number of machines is not power of 2, need group machines into power of 2 group. And we can let each group has at most 2 machines. if the group only has 1 machine. this machine is the normal node if the group has 2 machines, this group will have two type of nodes, one is the leader. leader will represent this group and communication with others.
|
|
enum class | LogLevel : int { Fatal = -1
, Warning = 0
, Info = 1
, Debug = 2
} |
|
enum | DataType { INVALID
, CSV
, TSV
, LIBSVM
} |
|
|
LIGHTGBM_EXPORT PredictionEarlyStopInstance | CreatePredictionEarlyStopInstance (const std::string &type, const PredictionEarlyStopConfig &config) |
| Create an early stopping algorithm of type type , with given round_period and margin threshold.
|
|
std::string | GetBoostingTypeFromModelFile (const char *filename) |
|
double | ObtainAutomaticInitialScore (const ObjectiveFunction *fobj, int class_id) |
|
int | LGBM_APIHandleException (const std::exception &ex) |
|
int | LGBM_APIHandleException (const std::string &ex) |
|
bool | NeedFilter (const std::vector< int > &cnt_in_bin, int total_cnt, int filter_cnt, BinType bin_type) |
|
std::vector< double > | GreedyFindBin (const double *distinct_values, const int *counts, int num_distinct_values, int max_bin, size_t total_cnt, int min_data_in_bin) |
|
std::vector< double > | FindBinWithZeroAsOneBin (const double *distinct_values, const int *counts, int num_distinct_values, int max_bin, size_t total_sample_cnt, int min_data_in_bin) |
|
void | GetBoostingType (const std::unordered_map< std::string, std::string > ¶ms, std::string *boosting) |
|
void | GetObjectiveType (const std::unordered_map< std::string, std::string > ¶ms, std::string *objective) |
|
void | GetMetricType (const std::unordered_map< std::string, std::string > ¶ms, std::vector< std::string > *metric) |
|
void | GetTaskType (const std::unordered_map< std::string, std::string > ¶ms, TaskType *task) |
|
void | GetDeviceType (const std::unordered_map< std::string, std::string > ¶ms, std::string *device_type) |
|
void | GetTreeLearnerType (const std::unordered_map< std::string, std::string > ¶ms, std::string *tree_learner) |
|
bool | CheckMultiClassObjective (const std::string &objective) |
|
std::vector< std::vector< int > > | NoGroup (const std::vector< int > &used_features) |
|
int | GetConfilctCount (const std::vector< bool > &mark, const int *indices, int num_indices, int max_cnt) |
|
void | MarkUsed (std::vector< bool > &mark, const int *indices, int num_indices) |
|
std::vector< std::vector< int > > | FindGroups (const std::vector< std::unique_ptr< BinMapper > > &bin_mappers, const std::vector< int > &find_order, int **sample_indices, const int *num_per_col, size_t total_sample_cnt, data_size_t max_error_cnt, data_size_t filter_cnt, data_size_t num_data, bool is_use_gpu) |
|
std::vector< std::vector< int > > | FastFeatureBundling (std::vector< std::unique_ptr< BinMapper > > &bin_mappers, int **sample_indices, const int *num_per_col, size_t total_sample_cnt, const std::vector< int > &used_features, double max_conflict_rate, data_size_t num_data, data_size_t min_data, double sparse_threshold, bool is_enable_sparse, bool is_use_gpu) |
|
void | GetStatistic (const char *str, int *comma_cnt, int *tab_cnt, int *colon_cnt) |
|
int | GetLabelIdxForLibsvm (std::string &str, int num_features, int label_idx) |
|
int | GetLabelIdxForTSV (std::string &str, int num_features, int label_idx) |
|
int | GetLabelIdxForCSV (std::string &str, int num_features, int label_idx) |
|
void | getline (std::stringstream &ss, std::string &line, const VirtualFileReader *reader, std::vector< char > &buffer, size_t buffer_size) |
|
void | SyncUpGlobalBestSplit (char *input_buffer_, char *output_buffer_, SplitInfo *smaller_best_split, SplitInfo *larger_best_split, int max_cat_threshold) |
|
std::function< std::vector< double >(int row_idx)> | RowFunctionFromDenseMatric (const void *data, int num_row, int num_col, int data_type, int is_row_major) |
|
std::function< std::vector< std::pair< int, double > >(int row_idx)> | RowPairFunctionFromDenseMatric (const void *data, int num_row, int num_col, int data_type, int is_row_major) |
|
desc and descl2 fields must be written in reStructuredText format
This file is auto generated by LightGBM\helpers\parameter_generator.py from LightGBM\include\LightGBM\config.h file.