Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Protected Member Functions
LightGBM::DataParallelTreeLearner< TREELEARNER_T > Class Template Reference

Data parallel learning algorithm. Workers use local data to construct histograms locally, then sync up global histograms. It is recommonded used when data is large or #feature is small. More...

#include <parallel_tree_learner.h>

Inheritance diagram for LightGBM::DataParallelTreeLearner< TREELEARNER_T >:

Public Member Functions

 DataParallelTreeLearner (const Config *config)
 
void Init (const Dataset *train_data, bool is_constant_hessian) override
 
void ResetConfig (const Config *config) override
 

Protected Member Functions

void BeforeTrain () override
 
void FindBestSplits () override
 
void FindBestSplitsFromHistograms (const std::vector< int8_t > &is_feature_used, bool use_subtract) override
 
void Split (Tree *tree, int best_Leaf, int *left_leaf, int *right_leaf) override
 
data_size_t GetGlobalDataCountInLeaf (int leaf_idx) const override
 

Detailed Description

template<typename TREELEARNER_T>
class LightGBM::DataParallelTreeLearner< TREELEARNER_T >

Data parallel learning algorithm. Workers use local data to construct histograms locally, then sync up global histograms. It is recommonded used when data is large or #feature is small.


The documentation for this class was generated from the following files: