Medial Code Documentation
|
Data parallel learning algorithm. Workers use local data to construct histograms locally, then sync up global histograms. It is recommonded used when data is large or #feature is small. More...
#include <parallel_tree_learner.h>
Public Member Functions | |
DataParallelTreeLearner (const Config *config) | |
void | Init (const Dataset *train_data, bool is_constant_hessian) override |
void | ResetConfig (const Config *config) override |
Protected Member Functions | |
void | BeforeTrain () override |
void | FindBestSplits () override |
void | FindBestSplitsFromHistograms (const std::vector< int8_t > &is_feature_used, bool use_subtract) override |
void | Split (Tree *tree, int best_Leaf, int *left_leaf, int *right_leaf) override |
data_size_t | GetGlobalDataCountInLeaf (int leaf_idx) const override |
Data parallel learning algorithm. Workers use local data to construct histograms locally, then sync up global histograms. It is recommonded used when data is large or #feature is small.