Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions
LightGBM::GBDTBase Class Referenceabstract
Inheritance diagram for LightGBM::GBDTBase:
LightGBM::Boosting LightGBM::GBDT LightGBM::DART LightGBM::GBDT_Accessor LightGBM::GOSS LightGBM::RF

Public Member Functions

virtual double GetLeafValue (int tree_idx, int leaf_idx) const =0
 
virtual void SetLeafValue (int tree_idx, int leaf_idx, double val)=0
 
- Public Member Functions inherited from LightGBM::Boosting
virtual ~Boosting ()
 virtual destructor
 
virtual void Init (const Config *config, const Dataset *train_data, const ObjectiveFunction *objective_function, const std::vector< const Metric * > &training_metrics)=0
 Initialization logic.
 
virtual void MergeFrom (const Boosting *other)=0
 Merge model from other boosting object Will insert to the front of current boosting object.
 
virtual void ShuffleModels (int start_iter, int end_iter)=0
 Shuffle Existing Models.
 
virtual void ResetTrainingData (const Dataset *train_data, const ObjectiveFunction *objective_function, const std::vector< const Metric * > &training_metrics)=0
 
virtual void ResetConfig (const Config *config)=0
 
virtual void AddValidDataset (const Dataset *valid_data, const std::vector< const Metric * > &valid_metrics)=0
 Add a validation data.
 
virtual void Train (int snapshot_freq, const std::string &model_output_path)=0
 
virtual void RefitTree (const std::vector< std::vector< int > > &tree_leaf_prediction)=0
 Update the tree output by new training data.
 
virtual bool TrainOneIter (const score_t *gradients, const score_t *hessians)=0
 Training logic.
 
virtual void RollbackOneIter ()=0
 Rollback one iteration.
 
virtual int GetCurrentIteration () const =0
 return current iteration
 
virtual std::vector< double > GetEvalAt (int data_idx) const =0
 Get evaluation result at data_idx data.
 
virtual const double * GetTrainingScore (int64_t *out_len)=0
 Get current training score.
 
virtual int64_t GetNumPredictAt (int data_idx) const =0
 Get prediction result at data_idx data.
 
virtual void GetPredictAt (int data_idx, double *result, int64_t *out_len)=0
 Get prediction result at data_idx data.
 
virtual int NumPredictOneRow (int num_iteration, bool is_pred_leaf, bool is_pred_contrib) const =0
 
virtual void PredictRaw (const double *features, double *output, const PredictionEarlyStopInstance *early_stop) const =0
 Prediction for one record, not sigmoid transform.
 
virtual void PredictRawByMap (const std::unordered_map< int, double > &features, double *output, const PredictionEarlyStopInstance *early_stop) const =0
 
virtual void Predict (const double *features, double *output, const PredictionEarlyStopInstance *early_stop) const =0
 Prediction for one record, sigmoid transformation will be used if needed.
 
virtual void PredictByMap (const std::unordered_map< int, double > &features, double *output, const PredictionEarlyStopInstance *early_stop) const =0
 
virtual void PredictLeafIndex (const double *features, double *output) const =0
 Prediction for one record with leaf index.
 
virtual void PredictLeafIndexByMap (const std::unordered_map< int, double > &features, double *output) const =0
 
virtual void PredictContrib (const double *features, double *output, const PredictionEarlyStopInstance *early_stop) const =0
 Feature contributions for the model's prediction of one record.
 
virtual std::string DumpModel (int start_iteration, int num_iteration) const =0
 Dump model to json format string.
 
virtual std::string ModelToIfElse (int num_iteration) const =0
 Translate model to if-else statement.
 
virtual bool SaveModelToIfElse (int num_iteration, const char *filename) const =0
 Translate model to if-else statement.
 
virtual bool SaveModelToFile (int start_iteration, int num_iterations, const char *filename) const =0
 Save model to file.
 
std::string SaveModelToString (int num_iterations)
 Save model to string.
 
virtual std::string SaveModelToString (int start_iteration, int num_iterations) const =0
 
bool LoadModelFromString (std::string str)
 Restore from a serialized string.
 
virtual bool LoadModelFromString (const char *buffer, size_t len)=0
 
virtual std::vector< double > FeatureImportance (int num_iteration, int importance_type) const =0
 Calculate feature importances.
 
virtual int MaxFeatureIdx () const =0
 Get max feature index of this model.
 
virtual std::vector< std::string > FeatureNames () const =0
 Get feature names of this model.
 
virtual int LabelIdx () const =0
 Get index of label column.
 
virtual int NumberOfTotalModel () const =0
 Get number of weak sub-models.
 
virtual int NumModelPerIteration () const =0
 Get number of models per iteration.
 
virtual int NumberOfClasses () const =0
 Get number of classes.
 
virtual bool NeedAccuratePrediction () const =0
 The prediction should be accurate or not. True will disable early stopping for prediction.
 
virtual void InitPredict (int num_iteration, bool is_pred_contrib)=0
 Initial work for the prediction.
 
virtual const char * SubModelName () const =0
 Name of submodel.
 
Boostingoperator= (const Boosting &)=delete
 Disable copy.
 
 Boosting (const Boosting &)=delete
 Disable copy.
 

Additional Inherited Members

- Static Public Member Functions inherited from LightGBM::Boosting
static bool LoadFileToBoosting (Boosting *boosting, const char *filename)
 
static BoostingCreateBoosting (const std::string &type, const char *filename)
 Create boosting object.
 

The documentation for this class was generated from the following file: