|
virtual double | GetLeafValue (int tree_idx, int leaf_idx) const =0 |
|
virtual void | SetLeafValue (int tree_idx, int leaf_idx, double val)=0 |
|
virtual | ~Boosting () |
| virtual destructor
|
|
virtual void | Init (const Config *config, const Dataset *train_data, const ObjectiveFunction *objective_function, const std::vector< const Metric * > &training_metrics)=0 |
| Initialization logic.
|
|
virtual void | MergeFrom (const Boosting *other)=0 |
| Merge model from other boosting object Will insert to the front of current boosting object.
|
|
virtual void | ShuffleModels (int start_iter, int end_iter)=0 |
| Shuffle Existing Models.
|
|
virtual void | ResetTrainingData (const Dataset *train_data, const ObjectiveFunction *objective_function, const std::vector< const Metric * > &training_metrics)=0 |
|
virtual void | ResetConfig (const Config *config)=0 |
|
virtual void | AddValidDataset (const Dataset *valid_data, const std::vector< const Metric * > &valid_metrics)=0 |
| Add a validation data.
|
|
virtual void | Train (int snapshot_freq, const std::string &model_output_path)=0 |
|
virtual void | RefitTree (const std::vector< std::vector< int > > &tree_leaf_prediction)=0 |
| Update the tree output by new training data.
|
|
virtual bool | TrainOneIter (const score_t *gradients, const score_t *hessians)=0 |
| Training logic.
|
|
virtual void | RollbackOneIter ()=0 |
| Rollback one iteration.
|
|
virtual int | GetCurrentIteration () const =0 |
| return current iteration
|
|
virtual std::vector< double > | GetEvalAt (int data_idx) const =0 |
| Get evaluation result at data_idx data.
|
|
virtual const double * | GetTrainingScore (int64_t *out_len)=0 |
| Get current training score.
|
|
virtual int64_t | GetNumPredictAt (int data_idx) const =0 |
| Get prediction result at data_idx data.
|
|
virtual void | GetPredictAt (int data_idx, double *result, int64_t *out_len)=0 |
| Get prediction result at data_idx data.
|
|
virtual int | NumPredictOneRow (int num_iteration, bool is_pred_leaf, bool is_pred_contrib) const =0 |
|
virtual void | PredictRaw (const double *features, double *output, const PredictionEarlyStopInstance *early_stop) const =0 |
| Prediction for one record, not sigmoid transform.
|
|
virtual void | PredictRawByMap (const std::unordered_map< int, double > &features, double *output, const PredictionEarlyStopInstance *early_stop) const =0 |
|
virtual void | Predict (const double *features, double *output, const PredictionEarlyStopInstance *early_stop) const =0 |
| Prediction for one record, sigmoid transformation will be used if needed.
|
|
virtual void | PredictByMap (const std::unordered_map< int, double > &features, double *output, const PredictionEarlyStopInstance *early_stop) const =0 |
|
virtual void | PredictLeafIndex (const double *features, double *output) const =0 |
| Prediction for one record with leaf index.
|
|
virtual void | PredictLeafIndexByMap (const std::unordered_map< int, double > &features, double *output) const =0 |
|
virtual void | PredictContrib (const double *features, double *output, const PredictionEarlyStopInstance *early_stop) const =0 |
| Feature contributions for the model's prediction of one record.
|
|
virtual std::string | DumpModel (int start_iteration, int num_iteration) const =0 |
| Dump model to json format string.
|
|
virtual std::string | ModelToIfElse (int num_iteration) const =0 |
| Translate model to if-else statement.
|
|
virtual bool | SaveModelToIfElse (int num_iteration, const char *filename) const =0 |
| Translate model to if-else statement.
|
|
virtual bool | SaveModelToFile (int start_iteration, int num_iterations, const char *filename) const =0 |
| Save model to file.
|
|
std::string | SaveModelToString (int num_iterations) |
| Save model to string.
|
|
virtual std::string | SaveModelToString (int start_iteration, int num_iterations) const =0 |
|
bool | LoadModelFromString (std::string str) |
| Restore from a serialized string.
|
|
virtual bool | LoadModelFromString (const char *buffer, size_t len)=0 |
|
virtual std::vector< double > | FeatureImportance (int num_iteration, int importance_type) const =0 |
| Calculate feature importances.
|
|
virtual int | MaxFeatureIdx () const =0 |
| Get max feature index of this model.
|
|
virtual std::vector< std::string > | FeatureNames () const =0 |
| Get feature names of this model.
|
|
virtual int | LabelIdx () const =0 |
| Get index of label column.
|
|
virtual int | NumberOfTotalModel () const =0 |
| Get number of weak sub-models.
|
|
virtual int | NumModelPerIteration () const =0 |
| Get number of models per iteration.
|
|
virtual int | NumberOfClasses () const =0 |
| Get number of classes.
|
|
virtual bool | NeedAccuratePrediction () const =0 |
| The prediction should be accurate or not. True will disable early stopping for prediction.
|
|
virtual void | InitPredict (int num_iteration, bool is_pred_contrib)=0 |
| Initial work for the prediction.
|
|
virtual const char * | SubModelName () const =0 |
| Name of submodel.
|
|
Boosting & | operator= (const Boosting &)=delete |
| Disable copy.
|
|
| Boosting (const Boosting &)=delete |
| Disable copy.
|
|