|
Medial Code Documentation
|
learner that performs gradient boosting for a specific objective function. It does training and prediction. More...
Public Member Functions | |
| LearnerImpl (std::vector< std::shared_ptr< DMatrix > > cache) | |
| std::vector< std::string > | DumpModel (const FeatureMap &fmap, bool with_stats, std::string format) override |
| dump the model in the requested format | |
| Learner * | Slice (bst_layer_t begin, bst_layer_t end, bst_layer_t step, bool *out_of_bound) override |
| Slice the model. | |
| void | UpdateOneIter (int iter, std::shared_ptr< DMatrix > train) override |
| update the model for one iteration With the specified objective function. | |
| void | BoostOneIter (int iter, std::shared_ptr< DMatrix > train, HostDeviceVector< GradientPair > *in_gpair) override |
| Do customized gradient boosting with in_gpair. in_gair can be mutated after this call. | |
| std::string | EvalOneIter (int iter, const std::vector< std::shared_ptr< DMatrix > > &data_sets, const std::vector< std::string > &data_names) override |
| evaluate the model for specific iteration using the configured metrics. | |
| void | Predict (std::shared_ptr< DMatrix > data, bool output_margin, HostDeviceVector< bst_float > *out_preds, bst_layer_t layer_begin, bst_layer_t layer_end, bool training, bool pred_leaf, bool pred_contribs, bool approx_contribs, bool pred_interactions) override |
| get prediction given the model. | |
| int32_t | BoostedRounds () const override |
| uint32_t | Groups () const override |
| Get the number of output groups from the model. | |
| XGBAPIThreadLocalEntry & | GetThreadLocal () const override |
| void | InplacePredict (std::shared_ptr< DMatrix > p_m, PredictionType type, float missing, HostDeviceVector< float > **out_preds, bst_layer_t iteration_begin, bst_layer_t iteration_end) override |
| Inplace prediction. | |
| void | CalcFeatureScore (std::string const &importance_type, common::Span< int32_t const > trees, std::vector< bst_feature_t > *features, std::vector< float > *scores) override |
| Calculate feature score. See doc in C API for outputs. | |
| const std::map< std::string, std::string > & | GetConfigurationArguments () const override |
| Get configuration arguments currently stored by the learner. | |
Public Member Functions inherited from xgboost::LearnerIO | |
| LearnerIO (std::vector< std::shared_ptr< DMatrix > > cache) | |
| void | LoadModel (Json const &in) override |
| load the model from a JSON object | |
| void | SaveModel (Json *p_out) const override |
| saves the model config to a JSON object | |
| void | LoadModel (dmlc::Stream *fi) override |
| void | SaveModel (dmlc::Stream *fo) const override |
| void | Save (dmlc::Stream *fo) const override |
| saves the model to a stream | |
| void | Load (dmlc::Stream *fi) override |
| load the model from a stream | |
Public Member Functions inherited from xgboost::LearnerConfiguration | |
| LearnerConfiguration (std::vector< std::shared_ptr< DMatrix > > cache) | |
| void | Configure () override |
| Configure Learner based on set parameters. | |
| void | CheckModelInitialized () const |
| void | LoadConfig (Json const &in) override |
| Load configuration from JSON object. | |
| void | SaveConfig (Json *p_out) const override |
| Save configuration to JSON object. | |
| void | SetParam (const std::string &key, const std::string &value) override |
| Set parameter for booster. | |
| void | SetParams (std::vector< std::pair< std::string, std::string > > const &args) override |
| Set multiple parameters at once. | |
| uint32_t | GetNumFeature () const override |
| Get the number of features of the booster. | |
| void | SetAttr (const std::string &key, const std::string &value) override |
| Set additional attribute to the Booster. | |
| bool | GetAttr (const std::string &key, std::string *out) const override |
| Get attribute from the booster. The property will be saved along the booster. | |
| bool | DelAttr (const std::string &key) override |
| Delete an attribute from the booster. | |
| void | SetFeatureNames (std::vector< std::string > const &fn) override |
| Set the feature names for current booster. | |
| void | GetFeatureNames (std::vector< std::string > *fn) const override |
| Get the feature names for current booster. | |
| void | SetFeatureTypes (std::vector< std::string > const &ft) override |
| Set the feature types for current booster. | |
| void | GetFeatureTypes (std::vector< std::string > *p_ft) const override |
| Get the feature types for current booster. | |
| std::vector< std::string > | GetAttrNames () const override |
| Get a vector of attribute names from the booster. | |
| Context const * | Ctx () const override |
| Return the context object of this Booster. | |
Public Member Functions inherited from xgboost::Learner | |
| ~Learner () override | |
| virtual destructor | |
Public Member Functions inherited from dmlc::Serializable | |
| virtual | ~Serializable () |
| virtual destructor | |
Protected Member Functions | |
| void | PredictRaw (DMatrix *data, PredictionCacheEntry *out_preds, bool training, unsigned layer_begin, unsigned layer_end) const |
| get un-transformed prediction | |
| void | ValidateDMatrix (DMatrix *p_fmat, bool is_training) const |
Protected Member Functions inherited from xgboost::LearnerConfiguration | |
| void | ConfigureModelParamWithoutBaseScore () |
| void | InitBaseScore (DMatrix const *p_fmat) |
Calculate the base_score based on input data. | |
Additional Inherited Members | |
Static Public Member Functions inherited from xgboost::Learner | |
| static Learner * | Create (const std::vector< std::shared_ptr< DMatrix > > &cache_data) |
| Create a new instance of learner. | |
Protected Attributes inherited from xgboost::LearnerConfiguration | |
| std::atomic< bool > | need_configuration_ |
| std::map< std::string, std::string > | cfg_ |
| std::map< std::string, std::string > | attributes_ |
| std::vector< std::string > | feature_names_ |
| std::vector< std::string > | feature_types_ |
| common::Monitor | monitor_ |
| LearnerModelParamLegacy | mparam_ |
| LearnerModelParam | learner_model_param_ |
| LearnerTrainParam | tparam_ |
| PredictionContainer | prediction_container_ |
| std::vector< std::string > | metric_names_ |
Protected Attributes inherited from xgboost::Learner | |
| std::unique_ptr< ObjFunction > | obj_ |
| objective function | |
| std::unique_ptr< GradientBooster > | gbm_ |
| The gradient booster used by the model. | |
| std::vector< std::unique_ptr< Metric > > | metrics_ |
| The evaluation metrics used to evaluate the model. | |
| Context | ctx_ |
| Training parameter. | |
Static Protected Attributes inherited from xgboost::LearnerConfiguration | |
| static std::string const | kEvalMetric {"eval_metric"} |
learner that performs gradient boosting for a specific objective function. It does training and prediction.
|
inlineoverridevirtual |
Implements xgboost::Learner.
|
inlineoverridevirtual |
Do customized gradient boosting with in_gpair. in_gair can be mutated after this call.
| iter | current iteration number |
| train | reference to the data matrix. |
| in_gpair | The input gradient statistics. |
Implements xgboost::Learner.
|
inlineoverridevirtual |
Calculate feature score. See doc in C API for outputs.
Implements xgboost::Learner.
|
inlineoverridevirtual |
dump the model in the requested format
| fmap | feature map that may help give interpretations of feature |
| with_stats | extra statistics while dumping model |
| format | the format to dump the model in |
Implements xgboost::Learner.
|
inlineoverridevirtual |
evaluate the model for specific iteration using the configured metrics.
| iter | iteration number |
| data_sets | datasets to be evaluated. |
| data_names | name of each dataset |
Implements xgboost::Learner.
|
inlineoverridevirtual |
Get configuration arguments currently stored by the learner.
Reimplemented from xgboost::LearnerConfiguration.
|
inlineoverridevirtual |
Implements xgboost::Learner.
|
inlineoverridevirtual |
Get the number of output groups from the model.
Implements xgboost::Learner.
|
inlineoverridevirtual |
Inplace prediction.
| p_fmat | A proxy DMatrix that contains the data and related meta info. | |
| type | Prediction type. | |
| missing | Missing value in the data. | |
| [in,out] | out_preds | Pointer to output prediction vector. |
| layer_begin | Beginning of boosted tree layer used for prediction. | |
| layer_end | End of booster layer. 0 means do not limit trees. |
Implements xgboost::Learner.
|
inlineoverridevirtual |
get prediction given the model.
| data | input data |
| output_margin | whether to only predict margin value instead of transformed prediction |
| out_preds | output vector that stores the prediction |
| layer_begin | Beginning of boosted tree layer used for prediction. |
| layer_end | End of booster layer. 0 means do not limit trees. |
| training | Whether the prediction result is used for training |
| pred_leaf | whether to only predict the leaf index of each tree in a boosted tree predictor |
| pred_contribs | whether to only predict the feature contributions |
| approx_contribs | whether to approximate the feature contributions for speed |
| pred_interactions | whether to compute the feature pair contributions |
Implements xgboost::Learner.
|
inlineprotected |
get un-transformed prediction
| data | training data matrix |
| out_preds | output vector that stores the prediction |
| ntree_limit | limit number of trees used for boosted tree predictor, when it equals 0, this means we are using all the trees |
| training | allow dropout when the DART booster is being used |
|
inlineoverridevirtual |
Slice the model.
See InplacePredict for layer parameters.
| step | step size between slice. |
| out_of_bound | Return true if end layer is out of bound. |
Implements xgboost::Learner.
|
inlineoverridevirtual |
update the model for one iteration With the specified objective function.
| iter | current iteration number |
| train | reference to the data matrix. |
Implements xgboost::Learner.