|
Medial Code Documentation
|
Learner class that does training and prediction. This is the user facing module of xgboost training. The Load/Save function corresponds to the model used in python/R. More...
#include <learner.h>
Public Member Functions | |
| ~Learner () override | |
| virtual destructor | |
| virtual void | Configure ()=0 |
| Configure Learner based on set parameters. | |
| virtual void | UpdateOneIter (int iter, std::shared_ptr< DMatrix > train)=0 |
| update the model for one iteration With the specified objective function. | |
| virtual void | BoostOneIter (int iter, std::shared_ptr< DMatrix > train, HostDeviceVector< GradientPair > *in_gpair)=0 |
| Do customized gradient boosting with in_gpair. in_gair can be mutated after this call. | |
| virtual std::string | EvalOneIter (int iter, const std::vector< std::shared_ptr< DMatrix > > &data_sets, const std::vector< std::string > &data_names)=0 |
| evaluate the model for specific iteration using the configured metrics. | |
| virtual void | Predict (std::shared_ptr< DMatrix > data, bool output_margin, HostDeviceVector< bst_float > *out_preds, bst_layer_t layer_begin, bst_layer_t layer_end, bool training=false, bool pred_leaf=false, bool pred_contribs=false, bool approx_contribs=false, bool pred_interactions=false)=0 |
| get prediction given the model. | |
| virtual void | InplacePredict (std::shared_ptr< DMatrix > p_m, PredictionType type, float missing, HostDeviceVector< float > **out_preds, bst_layer_t layer_begin, bst_layer_t layer_end)=0 |
| Inplace prediction. | |
| virtual void | CalcFeatureScore (std::string const &importance_type, common::Span< int32_t const > trees, std::vector< bst_feature_t > *features, std::vector< float > *scores)=0 |
| Calculate feature score. See doc in C API for outputs. | |
| virtual int32_t | BoostedRounds () const =0 |
| virtual std::uint32_t | Groups () const =0 |
| Get the number of output groups from the model. | |
| void | LoadModel (Json const &in) override=0 |
| load the model from a JSON object | |
| void | SaveModel (Json *out) const override=0 |
| saves the model config to a JSON object | |
| virtual void | LoadModel (dmlc::Stream *fi)=0 |
| virtual void | SaveModel (dmlc::Stream *fo) const =0 |
| virtual void | SetParams (Args const &args)=0 |
| Set multiple parameters at once. | |
| virtual void | SetParam (const std::string &key, const std::string &value)=0 |
| Set parameter for booster. | |
| virtual uint32_t | GetNumFeature () const =0 |
| Get the number of features of the booster. | |
| virtual void | SetAttr (const std::string &key, const std::string &value)=0 |
| Set additional attribute to the Booster. | |
| virtual bool | GetAttr (const std::string &key, std::string *out) const =0 |
| Get attribute from the booster. The property will be saved along the booster. | |
| virtual bool | DelAttr (const std::string &key)=0 |
| Delete an attribute from the booster. | |
| virtual std::vector< std::string > | GetAttrNames () const =0 |
| Get a vector of attribute names from the booster. | |
| virtual void | SetFeatureNames (std::vector< std::string > const &fn)=0 |
| Set the feature names for current booster. | |
| virtual void | GetFeatureNames (std::vector< std::string > *fn) const =0 |
| Get the feature names for current booster. | |
| virtual void | SetFeatureTypes (std::vector< std::string > const &ft)=0 |
| Set the feature types for current booster. | |
| virtual void | GetFeatureTypes (std::vector< std::string > *ft) const =0 |
| Get the feature types for current booster. | |
| virtual Learner * | Slice (bst_layer_t begin, bst_layer_t end, bst_layer_t step, bool *out_of_bound)=0 |
| Slice the model. | |
| virtual std::vector< std::string > | DumpModel (const FeatureMap &fmap, bool with_stats, std::string format)=0 |
| dump the model in the requested format | |
| virtual XGBAPIThreadLocalEntry & | GetThreadLocal () const =0 |
| virtual Context const * | Ctx () const =0 |
| Return the context object of this Booster. | |
| virtual const std::map< std::string, std::string > & | GetConfigurationArguments () const =0 |
| Get configuration arguments currently stored by the learner. | |
Public Member Functions inherited from xgboost::Configurable | |
| virtual void | LoadConfig (Json const &in)=0 |
| Load configuration from JSON object. | |
| virtual void | SaveConfig (Json *out) const =0 |
| Save configuration to JSON object. | |
Public Member Functions inherited from dmlc::Serializable | |
| virtual | ~Serializable () |
| virtual destructor | |
| virtual void | Load (Stream *fi)=0 |
| load the model from a stream | |
| virtual void | Save (Stream *fo) const =0 |
| saves the model to a stream | |
Static Public Member Functions | |
| static Learner * | Create (const std::vector< std::shared_ptr< DMatrix > > &cache_data) |
| Create a new instance of learner. | |
Protected Attributes | |
| std::unique_ptr< ObjFunction > | obj_ |
| objective function | |
| std::unique_ptr< GradientBooster > | gbm_ |
| The gradient booster used by the model. | |
| std::vector< std::unique_ptr< Metric > > | metrics_ |
| The evaluation metrics used to evaluate the model. | |
| Context | ctx_ |
| Training parameter. | |
Learner class that does training and prediction. This is the user facing module of xgboost training. The Load/Save function corresponds to the model used in python/R.
|
pure virtual |
Do customized gradient boosting with in_gpair. in_gair can be mutated after this call.
| iter | current iteration number |
| train | reference to the data matrix. |
| in_gpair | The input gradient statistics. |
Implemented in xgboost::LearnerImpl.
|
pure virtual |
Calculate feature score. See doc in C API for outputs.
Implemented in xgboost::LearnerImpl.
|
pure virtual |
Configure Learner based on set parameters.
Implemented in xgboost::LearnerConfiguration.
|
static |
Create a new instance of learner.
| cache_data | The matrix to cache the prediction. |
|
pure virtual |
Return the context object of this Booster.
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Delete an attribute from the booster.
| key | The key of the attribute. |
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
dump the model in the requested format
| fmap | feature map that may help give interpretations of feature |
| with_stats | extra statistics while dumping model |
| format | the format to dump the model in |
Implemented in xgboost::LearnerImpl.
|
pure virtual |
evaluate the model for specific iteration using the configured metrics.
| iter | iteration number |
| data_sets | datasets to be evaluated. |
| data_names | name of each dataset |
Implemented in xgboost::LearnerImpl.
|
pure virtual |
Get attribute from the booster. The property will be saved along the booster.
| key | The key of the attribute. |
| out | The output value. |
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Get a vector of attribute names from the booster.
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Get configuration arguments currently stored by the learner.
Implemented in xgboost::LearnerConfiguration, and xgboost::LearnerImpl.
|
pure virtual |
Get the feature names for current booster.
| fn | Output feature names |
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Get the feature types for current booster.
| fn | Output feature types |
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Get the number of features of the booster.
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Get the number of output groups from the model.
Implemented in xgboost::LearnerImpl.
|
pure virtual |
Inplace prediction.
| p_fmat | A proxy DMatrix that contains the data and related meta info. | |
| type | Prediction type. | |
| missing | Missing value in the data. | |
| [in,out] | out_preds | Pointer to output prediction vector. |
| layer_begin | Beginning of boosted tree layer used for prediction. | |
| layer_end | End of booster layer. 0 means do not limit trees. |
Implemented in xgboost::LearnerImpl.
|
overridepure virtual |
load the model from a JSON object
| in | JSON object where to load the model from |
Implements xgboost::Model.
Implemented in xgboost::LearnerIO.
|
pure virtual |
get prediction given the model.
| data | input data |
| output_margin | whether to only predict margin value instead of transformed prediction |
| out_preds | output vector that stores the prediction |
| layer_begin | Beginning of boosted tree layer used for prediction. |
| layer_end | End of booster layer. 0 means do not limit trees. |
| training | Whether the prediction result is used for training |
| pred_leaf | whether to only predict the leaf index of each tree in a boosted tree predictor |
| pred_contribs | whether to only predict the feature contributions |
| approx_contribs | whether to approximate the feature contributions for speed |
| pred_interactions | whether to compute the feature pair contributions |
Implemented in xgboost::LearnerImpl.
|
overridepure virtual |
saves the model config to a JSON object
| out | JSON container where to save the model to |
Implements xgboost::Model.
Implemented in xgboost::LearnerIO.
|
pure virtual |
Set additional attribute to the Booster.
The property will be saved along the booster.
| key | The key of the property. |
| value | The value of the property. |
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Set the feature names for current booster.
| fn | Input feature names |
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Set the feature types for current booster.
| ft | Input feature types. |
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Set parameter for booster.
The property will NOT be saved along with booster
| key | The key of parameter |
| value | The value of parameter |
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Set multiple parameters at once.
| args | parameters. |
Implemented in xgboost::LearnerConfiguration.
|
pure virtual |
Slice the model.
See InplacePredict for layer parameters.
| step | step size between slice. |
| out_of_bound | Return true if end layer is out of bound. |
Implemented in xgboost::LearnerImpl.
|
pure virtual |
update the model for one iteration With the specified objective function.
| iter | current iteration number |
| train | reference to the data matrix. |
Implemented in xgboost::LearnerImpl.