|
|
virtual | ~TreeLearner () |
| | virtual destructor
|
| |
| virtual void | Init (const Dataset *train_data, bool is_constant_hessian)=0 |
| | Initialize tree learner with training dataset.
|
| |
|
virtual void | ResetTrainingData (const Dataset *train_data)=0 |
| |
| virtual void | ResetConfig (const Config *config)=0 |
| | Reset tree configs.
|
| |
| virtual Tree * | Train (const score_t *gradients, const score_t *hessians, bool is_constant_hessian, Json &forced_split_json)=0 |
| | training tree model on dataset
|
| |
| virtual Tree * | FitByExistingTree (const Tree *old_tree, const score_t *gradients, const score_t *hessians) const =0 |
| | use a existing tree to fit the new gradients and hessians.
|
| |
|
virtual Tree * | FitByExistingTree (const Tree *old_tree, const std::vector< int > &leaf_pred, const score_t *gradients, const score_t *hessians)=0 |
| |
| virtual void | SetBaggingData (const data_size_t *used_indices, data_size_t num_data)=0 |
| | Set bagging data.
|
| |
| virtual void | AddPredictionToScore (const Tree *tree, double *out_score) const =0 |
| | Using last trained tree to predict score then adding to out_score;.
|
| |
|
virtual void | RenewTreeOutput (Tree *tree, const ObjectiveFunction *obj, const double *prediction, data_size_t total_num_data, const data_size_t *bag_indices, data_size_t bag_cnt) const =0 |
| |
|
virtual void | RenewTreeOutput (Tree *tree, const ObjectiveFunction *obj, double prediction, data_size_t total_num_data, const data_size_t *bag_indices, data_size_t bag_cnt) const =0 |
| |
|
TreeLearner & | operator= (const TreeLearner &)=delete |
| | Disable copy.
|
| |
|
| TreeLearner (const TreeLearner &)=delete |
| | Disable copy.
|
| |
Interface for tree learner.