|
Medial Code Documentation
|
#include <tree.h>
Public Member Functions | |
| Tree (int max_leaves) | |
| Constructor. | |
| Tree (const char *str, size_t *used_len) | |
| Construtor, from a string. | |
| int | Split (int leaf, int feature, int real_feature, uint32_t threshold_bin, double threshold_double, double left_value, double right_value, int left_cnt, int right_cnt, float gain, MissingType missing_type, bool default_left) |
| Performing a split on tree leaves. | |
| int | SplitCategorical (int leaf, int feature, int real_feature, const uint32_t *threshold_bin, int num_threshold_bin, const uint32_t *threshold, int num_threshold, double left_value, double right_value, int left_cnt, int right_cnt, float gain, MissingType missing_type) |
| Performing a split on tree leaves, with categorical feature. | |
| double | LeafOutput (int leaf) const |
| Get the output of one leaf. | |
| void | SetLeafOutput (int leaf, double output) |
| Set the output of one leaf. | |
| void | AddPredictionToScore (const Dataset *data, data_size_t num_data, double *score) const |
| Adding prediction value of this tree model to scores. | |
| void | AddPredictionToScore (const Dataset *data, const data_size_t *used_data_indices, data_size_t num_data, double *score) const |
| Adding prediction value of this tree model to scorese. | |
| double | Predict (const double *feature_values) const |
| Prediction on one record. | |
| double | PredictByMap (const std::unordered_map< int, double > &feature_values) const |
| int | PredictLeafIndex (const double *feature_values) const |
| int | PredictLeafIndexByMap (const std::unordered_map< int, double > &feature_values) const |
| void | PredictContrib (const double *feature_values, int num_features, double *output) |
| int | num_leaves () const |
| Get Number of leaves. | |
| int | leaf_depth (int leaf_idx) const |
| Get depth of specific leaf. | |
| int | split_feature (int split_idx) const |
| Get feature of specific split. | |
| double | split_gain (int split_idx) const |
| int | data_count (int node) const |
| Get the number of data points that fall at or below this node. | |
| void | Shrinkage (double rate) |
| Shrinkage for the tree's output shrinkage rate (a.k.a learning rate) is used to tune the traning process. | |
| double | shrinkage () const |
| void | AddBias (double val) |
| void | AsConstantTree (double val) |
| std::string | ToString () const |
| Serialize this object to string. | |
| std::string | ToJSON () const |
| Serialize this object to json. | |
| std::string | ToIfElse (int index, bool predict_leaf_index) const |
| Serialize this object to if-else statement. | |
| void | RecomputeMaxDepth () |
Tree model.
|
explicit |
Constructor.
| max_leaves | The number of max leaves |
| LightGBM::Tree::Tree | ( | const char * | str, |
| size_t * | used_len | ||
| ) |
Construtor, from a string.
| str | Model string |
| used_len | used count of str |
| void LightGBM::Tree::AddPredictionToScore | ( | const Dataset * | data, |
| const data_size_t * | used_data_indices, | ||
| data_size_t | num_data, | ||
| double * | score | ||
| ) | const |
Adding prediction value of this tree model to scorese.
| data | The dataset |
| used_data_indices | Indices of used data |
| num_data | Number of total data |
| score | Will add prediction to score |
| void LightGBM::Tree::AddPredictionToScore | ( | const Dataset * | data, |
| data_size_t | num_data, | ||
| double * | score | ||
| ) | const |
Adding prediction value of this tree model to scores.
| data | The dataset |
| num_data | Number of total data |
| score | Will add prediction to score |
|
inline |
Prediction on one record.
| feature_values | Feature value of this record |
|
inline |
Shrinkage for the tree's output shrinkage rate (a.k.a learning rate) is used to tune the traning process.
| rate | The factor of shrinkage |
| int LightGBM::Tree::Split | ( | int | leaf, |
| int | feature, | ||
| int | real_feature, | ||
| uint32_t | threshold_bin, | ||
| double | threshold_double, | ||
| double | left_value, | ||
| double | right_value, | ||
| int | left_cnt, | ||
| int | right_cnt, | ||
| float | gain, | ||
| MissingType | missing_type, | ||
| bool | default_left | ||
| ) |
Performing a split on tree leaves.
| leaf | Index of leaf to be split |
| feature | Index of feature; the converted index after removing useless features |
| real_feature | Index of feature, the original index on data |
| threshold_bin | Threshold(bin) of split |
| threshold_double | Threshold on feature value |
| left_value | Model Left child output |
| right_value | Model Right child output |
| left_cnt | Count of left child |
| right_cnt | Count of right child |
| gain | Split gain |
| missing_type | missing type |
| default_left | default direction for missing value |
| int LightGBM::Tree::SplitCategorical | ( | int | leaf, |
| int | feature, | ||
| int | real_feature, | ||
| const uint32_t * | threshold_bin, | ||
| int | num_threshold_bin, | ||
| const uint32_t * | threshold, | ||
| int | num_threshold, | ||
| double | left_value, | ||
| double | right_value, | ||
| int | left_cnt, | ||
| int | right_cnt, | ||
| float | gain, | ||
| MissingType | missing_type | ||
| ) |
Performing a split on tree leaves, with categorical feature.
| leaf | Index of leaf to be split |
| feature | Index of feature; the converted index after removing useless features |
| real_feature | Index of feature, the original index on data |
| threshold_bin | Threshold(bin) of split, use bitset to represent |
| num_threshold_bin | size of threshold_bin |
| threshold | Thresholds of real feature value, use bitset to represent |
| num_threshold | size of threshold |
| left_value | Model Left child output |
| right_value | Model Right child output |
| left_cnt | Count of left child |
| right_cnt | Count of right child |
| gain | Split gain |