11#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
12#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
22 typedef int StorageIndex;
52 :
public SolverBase<ColPivHouseholderQR<_MatrixType> >
56 typedef _MatrixType MatrixType;
62 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
63 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
71 typedef typename MatrixType::PlainObject PlainObject;
75 typedef typename PermutationType::StorageIndex PermIndexType;
89 m_colsTranspositions(),
93 m_isInitialized(
false),
94 m_usePrescribedThreshold(
false) {}
104 m_hCoeffs((
std::min)(rows,cols)),
105 m_colsPermutation(PermIndexType(cols)),
106 m_colsTranspositions(cols),
108 m_colNormsUpdated(cols),
109 m_colNormsDirect(cols),
110 m_isInitialized(
false),
111 m_usePrescribedThreshold(
false) {}
125 template<
typename InputType>
127 : m_qr(matrix.rows(), matrix.cols()),
128 m_hCoeffs((
std::min)(matrix.rows(),matrix.cols())),
129 m_colsPermutation(PermIndexType(matrix.cols())),
130 m_colsTranspositions(matrix.cols()),
131 m_temp(matrix.cols()),
132 m_colNormsUpdated(matrix.cols()),
133 m_colNormsDirect(matrix.cols()),
134 m_isInitialized(
false),
135 m_usePrescribedThreshold(
false)
137 compute(matrix.derived());
146 template<
typename InputType>
149 m_hCoeffs((
std::min)(matrix.rows(),matrix.cols())),
150 m_colsPermutation(PermIndexType(matrix.cols())),
151 m_colsTranspositions(matrix.cols()),
152 m_temp(matrix.cols()),
153 m_colNormsUpdated(matrix.cols()),
154 m_colNormsDirect(matrix.cols()),
155 m_isInitialized(
false),
156 m_usePrescribedThreshold(
false)
161 #ifdef EIGEN_PARSED_BY_DOXYGEN
176 template<
typename Rhs>
191 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
206 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
210 template<
typename InputType>
216 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
217 return m_colsPermutation;
258 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
261 for(
Index i = 0; i < m_nonzero_pivots; ++i)
274 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
275 return cols() -
rank();
287 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
288 return rank() == cols();
300 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
301 return rank() == rows();
312 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
323 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
327 inline Index rows()
const {
return m_qr.rows(); }
328 inline Index cols()
const {
return m_qr.cols(); }
355 m_usePrescribedThreshold =
true;
370 m_usePrescribedThreshold =
false;
380 eigen_assert(m_isInitialized || m_usePrescribedThreshold);
381 return m_usePrescribedThreshold ? m_prescribedThreshold
396 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
397 return m_nonzero_pivots;
413 eigen_assert(m_isInitialized &&
"Decomposition is not initialized.");
417 #ifndef EIGEN_PARSED_BY_DOXYGEN
418 template<
typename RhsType,
typename DstType>
421 template<
bool Conjugate,
typename RhsType,
typename DstType>
429 static void check_template_parameters()
431 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
434 void computeInPlace();
437 HCoeffsType m_hCoeffs;
438 PermutationType m_colsPermutation;
439 IntRowVectorType m_colsTranspositions;
440 RowVectorType m_temp;
441 RealRowVectorType m_colNormsUpdated;
442 RealRowVectorType m_colNormsDirect;
443 bool m_isInitialized, m_usePrescribedThreshold;
444 RealScalar m_prescribedThreshold, m_maxpivot;
445 Index m_nonzero_pivots;
449template<
typename MatrixType>
453 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
454 eigen_assert(m_qr.rows() == m_qr.cols() &&
"You can't take the determinant of a non-square matrix!");
455 return abs(m_qr.diagonal().prod());
458template<
typename MatrixType>
461 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
462 eigen_assert(m_qr.rows() == m_qr.cols() &&
"You can't take the determinant of a non-square matrix!");
463 return m_qr.diagonal().cwiseAbs().array().log().sum();
472template<
typename MatrixType>
473template<
typename InputType>
476 m_qr = matrix.derived();
481template<
typename MatrixType>
484 check_template_parameters();
491 Index rows = m_qr.rows();
492 Index cols = m_qr.cols();
493 Index size = m_qr.diagonalSize();
495 m_hCoeffs.resize(size);
499 m_colsTranspositions.resize(m_qr.cols());
502 m_colNormsUpdated.
resize(cols);
503 m_colNormsDirect.
resize(cols);
504 for (
Index k = 0; k < cols; ++k) {
507 m_colNormsDirect.coeffRef(k) = m_qr.col(k).
norm();
508 m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k);
511 RealScalar threshold_helper = numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows);
512 RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon());
514 m_nonzero_pivots = size;
515 m_maxpivot = RealScalar(0);
517 for(
Index k = 0; k < size; ++k)
520 Index biggest_col_index;
521 RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index));
522 biggest_col_index += k;
526 if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
527 m_nonzero_pivots = k;
530 m_colsTranspositions.coeffRef(k) = biggest_col_index;
531 if(k != biggest_col_index) {
532 m_qr.col(k).swap(m_qr.col(biggest_col_index));
533 std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index));
534 std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index));
535 ++number_of_transpositions;
540 m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
543 m_qr.coeffRef(k,k) = beta;
546 if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
549 m_qr.bottomRightCorner(rows-k, cols-k-1)
550 .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
553 for (
Index j = k + 1; j < cols; ++j) {
558 if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) {
559 RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j);
560 temp = (RealScalar(1) + temp) * (RealScalar(1) - temp);
561 temp = temp < RealScalar(0) ? RealScalar(0) : temp;
562 RealScalar temp2 = temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) /
563 m_colNormsDirect.coeffRef(j));
564 if (temp2 <= norm_downdate_threshold) {
567 m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm();
568 m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j);
570 m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp);
576 m_colsPermutation.setIdentity(PermIndexType(cols));
577 for(PermIndexType k = 0; k < size; ++k)
578 m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
580 m_det_pq = (number_of_transpositions%2) ? -1 : 1;
581 m_isInitialized =
true;
584#ifndef EIGEN_PARSED_BY_DOXYGEN
585template<
typename _MatrixType>
586template<
typename RhsType,
typename DstType>
587void ColPivHouseholderQR<_MatrixType>::_solve_impl(
const RhsType &rhs, DstType &dst)
const
589 const Index nonzero_pivots = nonzeroPivots();
591 if(nonzero_pivots == 0)
597 typename RhsType::PlainObject c(rhs);
599 c.applyOnTheLeft(householderQ().setLength(nonzero_pivots).
adjoint() );
601 m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots)
602 .template triangularView<Upper>()
603 .solveInPlace(c.topRows(nonzero_pivots));
605 for(
Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i);
606 for(
Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).
setZero();
609template<
typename _MatrixType>
610template<
bool Conjugate,
typename RhsType,
typename DstType>
611void ColPivHouseholderQR<_MatrixType>::_solve_impl_transposed(
const RhsType &rhs, DstType &dst)
const
613 const Index nonzero_pivots = nonzeroPivots();
615 if(nonzero_pivots == 0)
621 typename RhsType::PlainObject c(m_colsPermutation.transpose()*rhs);
623 m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots)
624 .template triangularView<Upper>()
625 .transpose().template conjugateIf<Conjugate>()
626 .solveInPlace(c.topRows(nonzero_pivots));
628 dst.topRows(nonzero_pivots) = c.topRows(nonzero_pivots);
629 dst.bottomRows(rows()-nonzero_pivots).setZero();
631 dst.applyOnTheLeft(householderQ().setLength(nonzero_pivots).
template conjugateIf<!Conjugate>() );
637template<
typename DstXprType,
typename MatrixType>
644 dst =
src.nestedExpression().solve(MatrixType::Identity(
src.rows(),
src.cols()));
653template<
typename MatrixType>
657 eigen_assert(m_isInitialized &&
"ColPivHouseholderQR is not initialized.");
665template<
typename Derived>
Householder rank-revealing QR decomposition of a matrix with column-pivoting.
Definition ColPivHouseholderQR.h:53
bool isInjective() const
Definition ColPivHouseholderQR.h:285
ColPivHouseholderQR(const EigenBase< InputType > &matrix)
Constructs a QR factorization from a given matrix.
Definition ColPivHouseholderQR.h:126
const HCoeffsType & hCoeffs() const
Definition ColPivHouseholderQR.h:334
HouseholderSequenceType householderQ() const
Definition ColPivHouseholderQR.h:655
Index rank() const
Definition ColPivHouseholderQR.h:255
ColPivHouseholderQR(Index rows, Index cols)
Default Constructor with memory preallocation.
Definition ColPivHouseholderQR.h:102
ComputationInfo info() const
Reports whether the QR factorization was successful.
Definition ColPivHouseholderQR.h:411
ColPivHouseholderQR(EigenBase< InputType > &matrix)
Constructs a QR factorization from a given matrix.
Definition ColPivHouseholderQR.h:147
const Inverse< ColPivHouseholderQR > inverse() const
Definition ColPivHouseholderQR.h:321
RealScalar threshold() const
Returns the threshold that will be used by certain methods such as rank().
Definition ColPivHouseholderQR.h:378
Index nonzeroPivots() const
Definition ColPivHouseholderQR.h:394
const PermutationType & colsPermutation() const
Definition ColPivHouseholderQR.h:214
Index dimensionOfKernel() const
Definition ColPivHouseholderQR.h:272
bool isSurjective() const
Definition ColPivHouseholderQR.h:298
bool isInvertible() const
Definition ColPivHouseholderQR.h:310
ColPivHouseholderQR()
Default Constructor.
Definition ColPivHouseholderQR.h:85
RealScalar maxPivot() const
Definition ColPivHouseholderQR.h:403
ColPivHouseholderQR & setThreshold(const RealScalar &threshold)
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine ...
Definition ColPivHouseholderQR.h:353
const MatrixType & matrixR() const
Definition ColPivHouseholderQR.h:204
ColPivHouseholderQR & setThreshold(Default_t)
Allows to come back to the default behavior, letting Eigen use its default formula for determining th...
Definition ColPivHouseholderQR.h:368
MatrixType::RealScalar absDeterminant() const
Definition ColPivHouseholderQR.h:450
const MatrixType & matrixQR() const
Definition ColPivHouseholderQR.h:189
MatrixType::RealScalar logAbsDeterminant() const
Definition ColPivHouseholderQR.h:459
Complete orthogonal decomposition (COD) of a matrix.
Definition CompleteOrthogonalDecomposition.h:52
EIGEN_DEVICE_FUNC void resize(Index newSize)
Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods...
Definition DenseBase.h:246
EIGEN_DEVICE_FUNC Derived & setZero()
Sets all coefficients in this expression to zero.
Definition CwiseNullaryOp.h:546
Expression of the inverse of another expression.
Definition Inverse.h:44
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvalReturnType eval() const
Definition DenseBase.h:407
EIGEN_DEVICE_FUNC const AdjointReturnType adjoint() const
Definition Transpose.h:221
EIGEN_DEVICE_FUNC RealScalar norm() const
Definition Dot.h:103
A base class for matrix decomposition and solvers.
Definition SolverBase.h:69
const Solve< ColPivHouseholderQR< _MatrixType >, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition SolverBase.h:106
EIGEN_DEVICE_FUNC ColPivHouseholderQR< _MatrixType > & derived()
Definition EigenBase.h:46
ComputationInfo
Enum for reporting the status of a computation.
Definition Constants.h:440
@ Success
Computation was successful.
Definition Constants.h:442
Namespace containing all symbols from the Eigen library.
Definition LDLT.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
NLOHMANN_BASIC_JSON_TPL_DECLARATION void swap(nlohmann::NLOHMANN_BASIC_JSON_TPL &j1, nlohmann::NLOHMANN_BASIC_JSON_TPL &j2) noexcept(//NOLINT(readability-inconsistent-declaration-parameter-name, cert-dcl58-cpp) is_nothrow_move_constructible< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value &&//NOLINT(misc-redundant-expression) is_nothrow_move_assignable< nlohmann::NLOHMANN_BASIC_JSON_TPL >::value)
exchanges the values of two JSON objects
Definition json.hpp:24418
Eigen::Index Index
The interface type of indices.
Definition EigenBase.h:39
The type used to identify a matrix expression.
Definition Constants.h:522
Holds information about the various numeric (i.e.
Definition NumTraits.h:236
The type used to identify a general solver (factored) storage.
Definition Constants.h:513
Definition AssignEvaluator.h:824
Definition AssignEvaluator.h:814
Definition AssignmentFunctors.h:21
Definition ForwardDeclarations.h:17