Medial Code Documentation
|
Modules | |
Global aligned box typedefs | |
Eigen defines several typedef shortcuts for most common aligned box types. | |
Typedefs | |
typedef AngleAxis< float > | Eigen::AngleAxisf |
single precision angle-axis type | |
typedef AngleAxis< double > | Eigen::AngleAxisd |
double precision angle-axis type | |
typedef Quaternion< float > | Eigen::Quaternionf |
single precision quaternion type | |
typedef Quaternion< double > | Eigen::Quaterniond |
double precision quaternion type | |
typedef Map< Quaternion< float >, 0 > | Eigen::QuaternionMapf |
Map an unaligned array of single precision scalars as a quaternion. | |
typedef Map< Quaternion< double >, 0 > | Eigen::QuaternionMapd |
Map an unaligned array of double precision scalars as a quaternion. | |
typedef Map< Quaternion< float >, Aligned > | Eigen::QuaternionMapAlignedf |
Map a 16-byte aligned array of single precision scalars as a quaternion. | |
typedef Map< Quaternion< double >, Aligned > | Eigen::QuaternionMapAlignedd |
Map a 16-byte aligned array of double precision scalars as a quaternion. | |
typedef Rotation2D< float > | Eigen::Rotation2Df |
single precision 2D rotation type | |
typedef Rotation2D< double > | Eigen::Rotation2Dd |
double precision 2D rotation type | |
typedef Transform< float, 2, Isometry > | Eigen::Isometry2f |
typedef Transform< float, 3, Isometry > | Eigen::Isometry3f |
typedef Transform< double, 2, Isometry > | Eigen::Isometry2d |
typedef Transform< double, 3, Isometry > | Eigen::Isometry3d |
typedef Transform< float, 2, Affine > | Eigen::Affine2f |
typedef Transform< float, 3, Affine > | Eigen::Affine3f |
typedef Transform< double, 2, Affine > | Eigen::Affine2d |
typedef Transform< double, 3, Affine > | Eigen::Affine3d |
typedef Transform< float, 2, AffineCompact > | Eigen::AffineCompact2f |
typedef Transform< float, 3, AffineCompact > | Eigen::AffineCompact3f |
typedef Transform< double, 2, AffineCompact > | Eigen::AffineCompact2d |
typedef Transform< double, 3, AffineCompact > | Eigen::AffineCompact3d |
typedef Transform< float, 2, Projective > | Eigen::Projective2f |
typedef Transform< float, 3, Projective > | Eigen::Projective3f |
typedef Transform< double, 2, Projective > | Eigen::Projective2d |
typedef Transform< double, 3, Projective > | Eigen::Projective3d |
Functions | |
template<typename Derived , typename OtherDerived > | |
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type | Eigen::umeyama (const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true) |
\geometry_module | |
Matrix< Scalar, 3, 1 > | Eigen::MatrixBase< Derived >::eulerAngles (Index a0, Index a1, Index a2) const |
\geometry_module | |
|
inline |
\geometry_module
*this
using the convention defined by the triplet (a0,a1,a2)Each of the three parameters a0,a1,a2 represents the respective rotation axis as an integer in {0,1,2}. For instance, in:
"2" represents the z axis and "0" the x axis, etc. The returned angles are such that we have the following equality:
This corresponds to the right-multiply conventions (with right hand side frames).
The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type Eigen::umeyama | ( | const MatrixBase< Derived > & | src, |
const MatrixBase< OtherDerived > & | dst, | ||
bool | with_scaling = true |
||
) |
\geometry_module
Returns the transformation between two point sets.
The algorithm is based on: "Least-squares estimation of transformation parameters between two point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
It estimates parameters
is minimized.
The algorithm is based on the analysis of the covariance matrix
Currently the method is working only for floating point matrices.
src | Source points ![]() |
dst | Destination points ![]() |
with_scaling | Sets ![]() false is passed. |