Medial Code Documentation
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Member Functions | Static Protected Member Functions | Protected Attributes | Friends
Eigen::Transform< _Scalar, _Dim, _Mode, _Options > Class Template Reference

\geometry_module More...

#include <Transform.h>

Public Types

enum  { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }
 
typedef _Scalar Scalar
 the scalar type of the coefficients
 
typedef Eigen::Index StorageIndex
 
typedef Eigen::Index Index
 
typedef internal::make_proper_matrix_type< Scalar, Rows, HDim, Options >::type MatrixType
 type of the matrix used to represent the transformation
 
typedef const MatrixType ConstMatrixType
 constified MatrixType
 
typedef Matrix< Scalar, Dim, Dim, Options > LinearMatrixType
 type of the matrix used to represent the linear part of the transformation
 
typedef Block< MatrixType, Dim, Dim, int(Mode)==(AffineCompact) &&(Options &RowMajor)==0 > LinearPart
 type of read/write reference to the linear part of the transformation
 
typedef const Block< ConstMatrixType, Dim, Dim, int(Mode)==(AffineCompact) &&(Options &RowMajor)==0 > ConstLinearPart
 type of read reference to the linear part of the transformation
 
typedef internal::conditional< int(Mode)==int(AffineCompact), MatrixType &, Block< MatrixType, Dim, HDim > >::type AffinePart
 type of read/write reference to the affine part of the transformation
 
typedef internal::conditional< int(Mode)==int(AffineCompact), constMatrixType &, constBlock< constMatrixType, Dim, HDim > >::type ConstAffinePart
 type of read reference to the affine part of the transformation
 
typedef Matrix< Scalar, Dim, 1 > VectorType
 type of a vector
 
typedef Block< MatrixType, Dim, 1,!(internal::traits< MatrixType >::Flags &RowMajorBit)> TranslationPart
 type of a read/write reference to the translation part of the rotation
 
typedef const Block< ConstMatrixType, Dim, 1,!(internal::traits< MatrixType >::Flags &RowMajorBit)> ConstTranslationPart
 type of a read reference to the translation part of the rotation
 
typedef Translation< Scalar, Dim > TranslationType
 corresponding translation type
 
typedef Transform< Scalar, Dim, TransformTimeDiagonalMode > TransformTimeDiagonalReturnType
 The return type of the product between a diagonal matrix and a transform.
 
typedef internal::transform_take_affine_part< Transformtake_affine_part
 

Public Member Functions

 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE (_Scalar, _Dim==Dynamic ? Dynamic :(_Dim+1) *(_Dim+1)) enum
 
 Transform ()
 Default constructor without initialization of the meaningful coefficients.
 
 Transform (const Transform &other)
 
 Transform (const TranslationType &t)
 
 Transform (const UniformScaling< Scalar > &s)
 
template<typename Derived >
 Transform (const RotationBase< Derived, Dim > &r)
 
Transformoperator= (const Transform &other)
 
template<typename OtherDerived >
 Transform (const EigenBase< OtherDerived > &other)
 Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix.
 
template<typename OtherDerived >
Transformoperator= (const EigenBase< OtherDerived > &other)
 Set *this from a Dim^2 or (Dim+1)^2 matrix.
 
template<int OtherOptions>
 Transform (const Transform< Scalar, Dim, Mode, OtherOptions > &other)
 
template<int OtherMode, int OtherOptions>
 Transform (const Transform< Scalar, Dim, OtherMode, OtherOptions > &other)
 
template<typename OtherDerived >
 Transform (const ReturnByValue< OtherDerived > &other)
 
template<typename OtherDerived >
Transformoperator= (const ReturnByValue< OtherDerived > &other)
 
Index rows () const
 
Index cols () const
 
Scalar operator() (Index row, Index col) const
 shortcut for m_matrix(row,col);
 
Scalaroperator() (Index row, Index col)
 shortcut for m_matrix(row,col);
 
const MatrixTypematrix () const
 
MatrixTypematrix ()
 
ConstLinearPart linear () const
 
LinearPart linear ()
 
ConstAffinePart affine () const
 
AffinePart affine ()
 
ConstTranslationPart translation () const
 
TranslationPart translation ()
 
template<typename OtherDerived >
EIGEN_STRONG_INLINE const OtherDerived::PlainObject operator* (const EigenBase< OtherDerived > &other) const
 
template<typename DiagonalDerived >
const TransformTimeDiagonalReturnType operator* (const DiagonalBase< DiagonalDerived > &b) const
 
template<typename OtherDerived >
Transformoperator*= (const EigenBase< OtherDerived > &other)
 
const Transform operator* (const Transform &other) const
 Concatenates two transformations.
 
template<int OtherMode, int OtherOptions>
internal::transform_transform_product_impl< Transform, Transform< Scalar, Dim, OtherMode, OtherOptions > >::ResultType operator* (const Transform< Scalar, Dim, OtherMode, OtherOptions > &other) const
 Concatenates two different transformations.
 
void setIdentity ()
 
template<typename OtherDerived >
Transformscale (const MatrixBase< OtherDerived > &other)
 
template<typename OtherDerived >
Transformprescale (const MatrixBase< OtherDerived > &other)
 
Transformscale (const Scalar &s)
 Applies on the right a uniform scale of a factor c to *this and returns a reference to *this.
 
Transformprescale (const Scalar &s)
 Applies on the left a uniform scale of a factor c to *this and returns a reference to *this.
 
template<typename OtherDerived >
Transformtranslate (const MatrixBase< OtherDerived > &other)
 
template<typename OtherDerived >
Transformpretranslate (const MatrixBase< OtherDerived > &other)
 
template<typename RotationType >
Transformrotate (const RotationType &rotation)
 
template<typename RotationType >
Transformprerotate (const RotationType &rotation)
 
Transformshear (const Scalar &sx, const Scalar &sy)
 Applies on the right the shear transformation represented by the vector other to *this and returns a reference to *this.
 
Transformpreshear (const Scalar &sx, const Scalar &sy)
 Applies on the left the shear transformation represented by the vector other to *this and returns a reference to *this.
 
Transformoperator= (const TranslationType &t)
 
Transformoperator*= (const TranslationType &t)
 
Transform operator* (const TranslationType &t) const
 
Transformoperator= (const UniformScaling< Scalar > &t)
 
Transformoperator*= (const UniformScaling< Scalar > &s)
 
TransformTimeDiagonalReturnType operator* (const UniformScaling< Scalar > &s) const
 
Transformoperator*= (const DiagonalMatrix< Scalar, Dim > &s)
 
template<typename Derived >
Transformoperator= (const RotationBase< Derived, Dim > &r)
 
template<typename Derived >
Transformoperator*= (const RotationBase< Derived, Dim > &r)
 
template<typename Derived >
Transform operator* (const RotationBase< Derived, Dim > &r) const
 
const LinearMatrixType rotation () const
 
template<typename RotationMatrixType , typename ScalingMatrixType >
void computeRotationScaling (RotationMatrixType *rotation, ScalingMatrixType *scaling) const
 decomposes the linear part of the transformation as a product rotation x scaling, the scaling being not necessarily positive.
 
template<typename ScalingMatrixType , typename RotationMatrixType >
void computeScalingRotation (ScalingMatrixType *scaling, RotationMatrixType *rotation) const
 decomposes the linear part of the transformation as a product rotation x scaling, the scaling being not necessarily positive.
 
template<typename PositionDerived , typename OrientationType , typename ScaleDerived >
TransformfromPositionOrientationScale (const MatrixBase< PositionDerived > &position, const OrientationType &orientation, const MatrixBase< ScaleDerived > &scale)
 
Transform inverse (TransformTraits traits=(TransformTraits) Mode) const
 
const Scalardata () const
 
Scalardata ()
 
template<typename NewScalarType >
internal::cast_return_type< Transform, Transform< NewScalarType, Dim, Mode, Options > >::type cast () const
 
template<typename OtherScalarType >
 Transform (const Transform< OtherScalarType, Dim, Mode, Options > &other)
 Copy constructor with scalar type conversion.
 
bool isApprox (const Transform &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const
 
void makeAffine ()
 Sets the last row to [0 ... 0 1].
 
Block< MatrixType, int(Mode)==int(Projective)?HDim:Dim, Dim > linearExt ()
 
const Block< MatrixType, int(Mode)==int(Projective)?HDim:Dim, Dim > linearExt () const
 
Block< MatrixType, int(Mode)==int(Projective)?HDim:Dim, 1 > translationExt ()
 
const Block< MatrixType, int(Mode)==int(Projective)?HDim:Dim, 1 > translationExt () const
 
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & scale (const MatrixBase< OtherDerived > &other)
 Applies on the right the non uniform scale transformation represented by the vector other to *this and returns a reference to *this.
 
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & prescale (const MatrixBase< OtherDerived > &other)
 Applies on the left the non uniform scale transformation represented by the vector other to *this and returns a reference to *this.
 
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & translate (const MatrixBase< OtherDerived > &other)
 Applies on the right the translation matrix represented by the vector other to *this and returns a reference to *this.
 
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & pretranslate (const MatrixBase< OtherDerived > &other)
 Applies on the left the translation matrix represented by the vector other to *this and returns a reference to *this.
 
template<typename RotationType >
Transform< Scalar, Dim, Mode, Options > & rotate (const RotationType &rotation)
 Applies on the right the rotation represented by the rotation rotation to *this and returns a reference to *this.
 
template<typename RotationType >
Transform< Scalar, Dim, Mode, Options > & prerotate (const RotationType &rotation)
 Applies on the left the rotation represented by the rotation rotation to *this and returns a reference to *this.
 
template<typename Derived >
Transform< Scalar, Dim, Mode, Options > & operator= (const RotationBase< Derived, Dim > &r)
 
template<typename Derived >
Transform< Scalar, Dim, Mode, Options > operator* (const RotationBase< Derived, Dim > &r) const
 
template<typename PositionDerived , typename OrientationType , typename ScaleDerived >
Transform< Scalar, Dim, Mode, Options > & fromPositionOrientationScale (const MatrixBase< PositionDerived > &position, const OrientationType &orientation, const MatrixBase< ScaleDerived > &scale)
 Convenient method to set *this from a position, orientation and scale of a 3D object.
 

Static Public Member Functions

static const Transform Identity ()
 Returns an identity transformation.
 

Static Protected Member Functions

static EIGEN_STRONG_INLINE void check_template_params ()
 

Protected Attributes

MatrixType m_matrix
 

Friends

template<typename OtherDerived >
const internal::transform_left_product_impl< OtherDerived, Mode, Options, _Dim, _Dim+1 >::ResultType operator* (const EigenBase< OtherDerived > &a, const Transform &b)
 
template<typename DiagonalDerived >
TransformTimeDiagonalReturnType operator* (const DiagonalBase< DiagonalDerived > &a, const Transform &b)
 

Detailed Description

template<typename _Scalar, int _Dim, int _Mode, int _Options>
class Eigen::Transform< _Scalar, _Dim, _Mode, _Options >

\geometry_module

Represents an homogeneous transformation in a N dimensional space

Template Parameters
_Scalarthe scalar type, i.e., the type of the coefficients
_Dimthe dimension of the space
_Modethe type of the transformation. Can be:
  • Affine: the transformation is stored as a (Dim+1)^2 matrix, where the last row is assumed to be [0 ... 0 1].
  • AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
  • Projective: the transformation is stored as a (Dim+1)^2 matrix without any assumption.
_Optionshas the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. These Options are passed directly to the underlying matrix type.

The homography is internally represented and stored by a matrix which is available through the matrix() method. To understand the behavior of this class you have to think a Transform object as its internal matrix representation. The chosen convention is right multiply:

v' = T * v

Therefore, an affine transformation matrix M is shaped like this:

$ \left( \begin{array}{cc}
 linear & translation\\
 0 ... 0 & 1
 \end{array} \right) $

Note that for a projective transformation the last row can be anything, and then the interpretation of different parts might be sightly different.

However, unlike a plain matrix, the Transform class provides many features simplifying both its assembly and usage. In particular, it can be composed with any other transformations (Transform,Translation,RotationBase,DiagonalMatrix) and can be directly used to transform implicit homogeneous vectors. All these operations are handled via the operator*. For the composition of transformations, its principle consists to first convert the right/left hand sides of the product to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. Of course, internally, operator* tries to perform the minimal number of operations according to the nature of each terms. Likewise, when applying the transform to points, the latters are automatically promoted to homogeneous vectors before doing the matrix product. The conventions to homogeneous representations are performed as follow:

Translation t (Dim)x(1): $ \left( \begin{array}{cc}
 I & t \\
 0\,...\,0 & 1
 \end{array} \right) $

Rotation R (Dim)x(Dim): $ \left( \begin{array}{cc}
 R & 0\\
 0\,...\,0 & 1
 \end{array} \right) $

Scaling DiagonalMatrix S (Dim)x(Dim): $ \left( \begin{array}{cc}
 S & 0\\
 0\,...\,0 & 1
 \end{array} \right) $

Column point v (Dim)x(1): $ \left( \begin{array}{c}
 v\\
 1
 \end{array} \right) $

Set of column points V1...Vn (Dim)x(n): $ \left( \begin{array}{ccc}
 v_1 & ... & v_n\\
 1 & ... & 1
 \end{array} \right) $

The concatenation of a Transform object with any kind of other transformation always returns a Transform object.

A little exception to the "as pure matrix product" rule is the case of the transformation of non homogeneous vectors by an affine transformation. In that case the last matrix row can be ignored, and the product returns non homogeneous vectors.

Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. The solution is either to use a Dim x Dynamic matrix or explicitly request a vector transformation by making the vector homogeneous:

m' = T * m.colwise().homogeneous();

Note that there is zero overhead.

Conversion methods from/to Qt's QMatrix and QTransform are available if the preprocessor token EIGEN_QT_SUPPORT is defined.

This class can be extended with the help of the plugin mechanism described on the page TopicCustomizingEigen by defining the preprocessor symbol EIGEN_TRANSFORM_PLUGIN.

See also
class Matrix, class Quaternion

Member Typedef Documentation

◆ Index

template<typename _Scalar , int _Dim, int _Mode, int _Options>
typedef Eigen::Index Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::Index
Deprecated:
since Eigen 3.3

Constructor & Destructor Documentation

◆ Transform()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::Transform ( )
inline

Default constructor without initialization of the meaningful coefficients.

If Mode==Affine, then the last row is set to [0 ... 0 1]

Member Function Documentation

◆ affine() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
AffinePart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::affine ( )
inline
Returns
a writable expression of the Dim x HDim affine part of the transformation

◆ affine() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
ConstAffinePart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::affine ( ) const
inline
Returns
a read-only expression of the Dim x HDim affine part of the transformation

◆ cast()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename NewScalarType >
internal::cast_return_type< Transform, Transform< NewScalarType, Dim, Mode, Options > >::type Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::cast ( ) const
inline
Returns
*this with scalar type casted to NewScalarType

Note that if NewScalarType is equal to the current scalar type of *this then this function smartly returns a const reference to *this.

◆ computeRotationScaling()

template<typename Scalar , int Dim, int Mode, int Options>
template<typename RotationMatrixType , typename ScalingMatrixType >
void Eigen::Transform< Scalar, Dim, Mode, Options >::computeRotationScaling ( RotationMatrixType *  rotation,
ScalingMatrixType scaling 
) const

decomposes the linear part of the transformation as a product rotation x scaling, the scaling being not necessarily positive.

If either pointer is zero, the corresponding computation is skipped.

\svd_module

See also
computeScalingRotation(), rotation(), class SVD

◆ computeScalingRotation()

template<typename Scalar , int Dim, int Mode, int Options>
template<typename ScalingMatrixType , typename RotationMatrixType >
void Eigen::Transform< Scalar, Dim, Mode, Options >::computeScalingRotation ( ScalingMatrixType scaling,
RotationMatrixType *  rotation 
) const

decomposes the linear part of the transformation as a product rotation x scaling, the scaling being not necessarily positive.

If either pointer is zero, the corresponding computation is skipped.

\svd_module

See also
computeRotationScaling(), rotation(), class SVD

◆ data() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
Scalar * Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::data ( )
inline
Returns
a non-const pointer to the column major internal matrix

◆ data() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
const Scalar * Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::data ( ) const
inline
Returns
a const pointer to the column major internal matrix

◆ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE ( _Scalar  ,
_Dim  = =Dynamic ? Dynamic : (_Dim+1)*(_Dim+1) 
)
inline

< space dimension in which the transformation holds

< size of a respective homogeneous vector

◆ Identity()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
static const Transform Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::Identity ( )
inlinestatic

Returns an identity transformation.

Todo:
In the future this function should be returning a Transform expression.

◆ inverse()

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > Eigen::Transform< Scalar, Dim, Mode, Options >::inverse ( TransformTraits  hint = (TransformTraits)Mode) const
inline
Returns
the inverse transformation according to some given knowledge on *this.
Parameters
hintallows to optimize the inversion process when the transformation is known to be not a general transformation (optional). The possible values are:
  • Projective if the transformation is not necessarily affine, i.e., if the last row is not guaranteed to be [0 ... 0 1]
  • Affine if the last row can be assumed to be [0 ... 0 1]
  • Isometry if the transformation is only a concatenations of translations and rotations. The default is the template class parameter Mode.
Warning
unless traits is always set to NoShear or NoScaling, this function requires the generic inverse method of MatrixBase defined in the LU module. If you forget to include this module, then you will get hard to debug linking errors.
See also
MatrixBase::inverse()

◆ isApprox()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
bool Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::isApprox ( const Transform< _Scalar, _Dim, _Mode, _Options > &  other,
const typename NumTraits< Scalar >::Real &  prec = NumTraits<Scalar>::dummy_precision() 
) const
inline
Returns
true if *this is approximately equal to other, within the precision determined by prec.
See also
MatrixBase::isApprox()

◆ linear() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
LinearPart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::linear ( )
inline
Returns
a writable expression of the linear part of the transformation

◆ linear() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
ConstLinearPart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::linear ( ) const
inline
Returns
a read-only expression of the linear part of the transformation

◆ matrix() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
MatrixType & Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::matrix ( )
inline
Returns
a writable expression of the transformation matrix

◆ matrix() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
const MatrixType & Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::matrix ( ) const
inline
Returns
a read-only expression of the transformation matrix

◆ operator()() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
Scalar & Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator() ( Index  row,
Index  col 
)
inline

shortcut for m_matrix(row,col);

See also
MatrixBase::operator(Index,Index)

◆ operator()() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
Scalar Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator() ( Index  row,
Index  col 
) const
inline

shortcut for m_matrix(row,col);

See also
MatrixBase::operator(Index,Index) const

◆ operator*() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
const TransformTimeDiagonalReturnType Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator* ( const DiagonalBase< DiagonalDerived > &  b) const
inline
Returns
The product expression of a transform a times a diagonal matrix b

The rhs diagonal matrix is interpreted as an affine scaling transformation. The product results in a Transform of the same type (mode) as the lhs only if the lhs mode is no isometry. In that case, the returned transform is an affinity.

◆ operator*() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
EIGEN_STRONG_INLINE const OtherDerived::PlainObject Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator* ( const EigenBase< OtherDerived > &  other) const
inline
Returns
an expression of the product between the transform *this and a matrix expression other.

The right-hand-side other can be either:

  • an homogeneous vector of size Dim+1,
  • a set of homogeneous vectors of size Dim+1 x N,
  • a transformation matrix of size Dim+1 x Dim+1.

Moreover, if *this represents an affine transformation (i.e., Mode!=Projective), then other can also be:

In all cases, the return type is a matrix or vector of same sizes as the right-hand-side other.

If you want to interpret other as a linear or affine transformation, then first convert it to a Transform<> type, or do your own cooking.

Finally, if you want to apply Affine transformations to vectors, then explicitly apply the linear part only:

v2 = A.linear() * v1;
Pseudo expression representing a solving operation.
Definition Solve.h:63

◆ prerotate()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename RotationType >
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::prerotate ( const RotationType rotation)

Applies on the left the rotation represented by the rotation rotation to *this and returns a reference to *this.

See rotate() for further details.

See also
rotate()

◆ prescale() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::prescale ( const MatrixBase< OtherDerived > &  other)

Applies on the left the non uniform scale transformation represented by the vector other to *this and returns a reference to *this.

See also
scale()

◆ prescale() [2/2]

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::prescale ( const Scalar s)
inline

Applies on the left a uniform scale of a factor c to *this and returns a reference to *this.

See also
scale(Scalar)

◆ preshear()

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::preshear ( const Scalar sx,
const Scalar sy 
)

Applies on the left the shear transformation represented by the vector other to *this and returns a reference to *this.

Warning
2D only.
See also
shear()

◆ pretranslate()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::pretranslate ( const MatrixBase< OtherDerived > &  other)

Applies on the left the translation matrix represented by the vector other to *this and returns a reference to *this.

See also
translate()

◆ rotate()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename RotationType >
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::rotate ( const RotationType rotation)

Applies on the right the rotation represented by the rotation rotation to *this and returns a reference to *this.

The template parameter RotationType is the type of the rotation which must be known by internal::toRotationMatrix<>.

Natively supported types includes:

This mechanism is easily extendable to support user types such as Euler angles, or a pair of Quaternion for 4D rotations.

See also
rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)

◆ rotation()

template<typename Scalar , int Dim, int Mode, int Options>
const Transform< Scalar, Dim, Mode, Options >::LinearMatrixType Eigen::Transform< Scalar, Dim, Mode, Options >::rotation ( ) const
Returns
the rotation part of the transformation

\svd_module

See also
computeRotationScaling(), computeScalingRotation(), class SVD

◆ scale() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::scale ( const MatrixBase< OtherDerived > &  other)

Applies on the right the non uniform scale transformation represented by the vector other to *this and returns a reference to *this.

See also
prescale()

◆ scale() [2/2]

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::scale ( const Scalar s)
inline

Applies on the right a uniform scale of a factor c to *this and returns a reference to *this.

See also
prescale(Scalar)

◆ setIdentity()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
void Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::setIdentity ( )
inline

◆ shear()

template<typename Scalar , int Dim, int Mode, int Options>
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< Scalar, Dim, Mode, Options >::shear ( const Scalar sx,
const Scalar sy 
)

Applies on the right the shear transformation represented by the vector other to *this and returns a reference to *this.

Warning
2D only.
See also
preshear()

◆ translate()

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
Transform< Scalar, Dim, Mode, Options > & Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::translate ( const MatrixBase< OtherDerived > &  other)

Applies on the right the translation matrix represented by the vector other to *this and returns a reference to *this.

See also
pretranslate()

◆ translation() [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
TranslationPart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::translation ( )
inline
Returns
a writable expression of the translation vector of the transformation

◆ translation() [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
ConstTranslationPart Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::translation ( ) const
inline
Returns
a read-only expression of the translation vector of the transformation

Friends And Related Symbol Documentation

◆ operator* [1/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
TransformTimeDiagonalReturnType operator* ( const DiagonalBase< DiagonalDerived > &  a,
const Transform< _Scalar, _Dim, _Mode, _Options > &  b 
)
friend
Returns
The product expression of a diagonal matrix a times a transform b

The lhs diagonal matrix is interpreted as an affine scaling transformation. The product results in a Transform of the same type (mode) as the lhs only if the lhs mode is no isometry. In that case, the returned transform is an affinity.

◆ operator* [2/2]

template<typename _Scalar , int _Dim, int _Mode, int _Options>
template<typename OtherDerived >
const internal::transform_left_product_impl< OtherDerived, Mode, Options, _Dim, _Dim+1 >::ResultType operator* ( const EigenBase< OtherDerived > &  a,
const Transform< _Scalar, _Dim, _Mode, _Options > &  b 
)
friend
Returns
the product expression of a transformation matrix a times a transform b

The left hand side other can be either:

  • a linear transformation matrix of size Dim x Dim,
  • an affine transformation matrix of size Dim x Dim+1,
  • a general transformation matrix of size Dim+1 x Dim+1.

The documentation for this class was generated from the following files: