Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Data Fields | Static Public Attributes | Protected Member Functions | Protected Attributes
xgboost.dask.DaskXGBClassifier Class Reference
Inheritance diagram for xgboost.dask.DaskXGBClassifier:
xgboost.dask.DaskScikitLearnBase xgboost.sklearn.XGBModel xgboost.dask.DaskXGBRFClassifier

Public Member Functions

"DaskXGBClassifier" fit (self, _DataT X, _DaskCollection y, *Optional[_DaskCollection] sample_weight=None, Optional[_DaskCollection] base_margin=None, Optional[Sequence[Tuple[_DaskCollection, _DaskCollection]]] eval_set=None, Optional[Union[str, Sequence[str], Callable]] eval_metric=None, Optional[int] early_stopping_rounds=None, Union[int, bool] verbose=True, Optional[Union[Booster, XGBModel]] xgb_model=None, Optional[Sequence[_DaskCollection]] sample_weight_eval_set=None, Optional[Sequence[_DaskCollection]] base_margin_eval_set=None, Optional[_DaskCollection] feature_weights=None, Optional[Sequence[TrainingCallback]] callbacks=None)
 
Any predict_proba (self, _DaskCollection X, bool validate_features=True, Optional[_DaskCollection] base_margin=None, Optional[Tuple[int, int]] iteration_range=None)
 
- Public Member Functions inherited from xgboost.dask.DaskScikitLearnBase
Any predict (self, _DataT X, bool output_margin=False, bool validate_features=True, Optional[_DaskCollection] base_margin=None, Optional[Tuple[int, int]] iteration_range=None)
 
Any apply (self, _DataT X, Optional[Tuple[int, int]] iteration_range=None)
 
Awaitable[Any] __await__ (self)
 
Dict __getstate__ (self)
 
"distributed.Client" client (self)
 
None client (self, "distributed.Client" clt)
 
- Public Member Functions inherited from xgboost.sklearn.XGBModel
None __init__ (self, Optional[int] max_depth=None, Optional[int] max_leaves=None, Optional[int] max_bin=None, Optional[str] grow_policy=None, Optional[float] learning_rate=None, Optional[int] n_estimators=None, Optional[int] verbosity=None, SklObjective objective=None, Optional[str] booster=None, Optional[str] tree_method=None, Optional[int] n_jobs=None, Optional[float] gamma=None, Optional[float] min_child_weight=None, Optional[float] max_delta_step=None, Optional[float] subsample=None, Optional[str] sampling_method=None, Optional[float] colsample_bytree=None, Optional[float] colsample_bylevel=None, Optional[float] colsample_bynode=None, Optional[float] reg_alpha=None, Optional[float] reg_lambda=None, Optional[float] scale_pos_weight=None, Optional[float] base_score=None, Optional[Union[np.random.RandomState, int]] random_state=None, float missing=np.nan, Optional[int] num_parallel_tree=None, Optional[Union[Dict[str, int], str]] monotone_constraints=None, Optional[Union[str, Sequence[Sequence[str]]]] interaction_constraints=None, Optional[str] importance_type=None, Optional[str] device=None, Optional[bool] validate_parameters=None, bool enable_categorical=False, Optional[FeatureTypes] feature_types=None, Optional[int] max_cat_to_onehot=None, Optional[int] max_cat_threshold=None, Optional[str] multi_strategy=None, Optional[Union[str, List[str], Callable]] eval_metric=None, Optional[int] early_stopping_rounds=None, Optional[List[TrainingCallback]] callbacks=None, **Any kwargs)
 
bool __sklearn_is_fitted__ (self)
 
Booster get_booster (self)
 
"XGBModel" set_params (self, **Any params)
 
Dict[str, Any] get_params (self, bool deep=True)
 
Dict[str, Any] get_xgb_params (self)
 
int get_num_boosting_rounds (self)
 
None save_model (self, Union[str, os.PathLike] fname)
 
None load_model (self, ModelIn fname)
 
Dict[str, Dict[str, List[float]]] evals_result (self)
 
int n_features_in_ (self)
 
np.ndarray feature_names_in_ (self)
 
float best_score (self)
 
int best_iteration (self)
 
np.ndarray feature_importances_ (self)
 
np.ndarray coef_ (self)
 
np.ndarray intercept_ (self)
 

Data Fields

 client
 
 classes_
 
 n_classes_
 
 objective
 
- Data Fields inherited from xgboost.dask.DaskScikitLearnBase
 client
 
- Data Fields inherited from xgboost.sklearn.XGBModel
 n_estimators
 
 objective
 
 max_depth
 
 max_leaves
 
 max_bin
 
 grow_policy
 
 learning_rate
 
 verbosity
 
 booster
 
 tree_method
 
 gamma
 
 min_child_weight
 
 max_delta_step
 
 subsample
 
 sampling_method
 
 colsample_bytree
 
 colsample_bylevel
 
 colsample_bynode
 
 reg_alpha
 
 reg_lambda
 
 scale_pos_weight
 
 base_score
 
 missing
 
 num_parallel_tree
 
 random_state
 
 n_jobs
 
 monotone_constraints
 
 interaction_constraints
 
 importance_type
 
 device
 
 validate_parameters
 
 enable_categorical
 
 feature_types
 
 max_cat_to_onehot
 
 max_cat_threshold
 
 multi_strategy
 
 eval_metric
 
 early_stopping_rounds
 
 callbacks
 
 kwargs
 
 n_classes_
 
 evals_result_
 

Static Public Attributes

str end_note
 

Protected Member Functions

"DaskXGBClassifier" _fit_async (self, _DataT X, _DaskCollection y, Optional[_DaskCollection] sample_weight, Optional[_DaskCollection] base_margin, Optional[Sequence[Tuple[_DaskCollection, _DaskCollection]]] eval_set, Optional[Union[str, Sequence[str], Metric]] eval_metric, Optional[Sequence[_DaskCollection]] sample_weight_eval_set, Optional[Sequence[_DaskCollection]] base_margin_eval_set, Optional[int] early_stopping_rounds, Union[int, bool] verbose, Optional[Union[Booster, XGBModel]] xgb_model, Optional[_DaskCollection] feature_weights, Optional[Sequence[TrainingCallback]] callbacks)
 
_DaskCollection _predict_proba_async (self, _DataT X, bool validate_features, Optional[_DaskCollection] base_margin, Optional[Tuple[int, int]] iteration_range)
 
_DaskCollection _predict_async (self, _DataT data, bool output_margin, bool validate_features, Optional[_DaskCollection] base_margin, Optional[Tuple[int, int]] iteration_range)
 
- Protected Member Functions inherited from xgboost.dask.DaskScikitLearnBase
Any _apply_async (self, _DataT X, Optional[Tuple[int, int]] iteration_range=None)
 
Any _client_sync (self, Callable func, **Any kwargs)
 
- Protected Member Functions inherited from xgboost.sklearn.XGBModel
Dict[str, bool] _more_tags (self)
 
str _get_type (self)
 
None _load_model_attributes (self, dict config)
 
Tuple[ Optional[Union[Booster, str, "XGBModel"]], Optional[Metric], Dict[str, Any], Optional[int], Optional[Sequence[TrainingCallback]],] _configure_fit (self, Optional[Union[Booster, "XGBModel", str]] booster, Optional[Union[Callable, str, Sequence[str]]] eval_metric, Dict[str, Any] params, Optional[int] early_stopping_rounds, Optional[Sequence[TrainingCallback]] callbacks)
 
DMatrix _create_dmatrix (self, Optional[DMatrix] ref, **Any kwargs)
 
None _set_evaluation_result (self, TrainingCallback.EvalsLog evals_result)
 
bool _can_use_inplace_predict (self)
 
Tuple[int, int] _get_iteration_range (self, Optional[Tuple[int, int]] iteration_range)
 

Protected Attributes

 _Booster
 
 _fit_async
 
 _predict_proba_async
 
- Protected Attributes inherited from xgboost.dask.DaskScikitLearnBase
 _apply_async
 
 _asynchronous
 
- Protected Attributes inherited from xgboost.sklearn.XGBModel
 _Booster
 

Additional Inherited Members

- Static Protected Attributes inherited from xgboost.dask.DaskScikitLearnBase
 _client = None
 

Member Function Documentation

◆ _predict_async()

_DaskCollection xgboost.dask.DaskXGBClassifier._predict_async (   self,
_DataT  data,
bool  output_margin,
bool  validate_features,
Optional[_DaskCollection]  base_margin,
Optional[Tuple[int, int]]  iteration_range 
)
protected

Reimplemented from xgboost.dask.DaskScikitLearnBase.

◆ fit()

"DaskXGBClassifier" xgboost.dask.DaskXGBClassifier.fit (   self,
_DataT  X,
_DaskCollection  y,
*Optional[_DaskCollection]   sample_weight = None,
Optional[_DaskCollection]   base_margin = None,
Optional[Sequence[Tuple[_DaskCollection, _DaskCollection]]]   eval_set = None,
Optional[Union[str, Sequence[str], Callable]]   eval_metric = None,
Optional[int]   early_stopping_rounds = None,
Union[int, bool]   verbose = True,
Optional[Union[Booster, XGBModel]]   xgb_model = None,
Optional[Sequence[_DaskCollection]]   sample_weight_eval_set = None,
Optional[Sequence[_DaskCollection]]   base_margin_eval_set = None,
Optional[_DaskCollection]   feature_weights = None,
Optional[Sequence[TrainingCallback]]   callbacks = None 
)
Fit gradient boosting model.

Note that calling ``fit()`` multiple times will cause the model object to be
re-fit from scratch. To resume training from a previous checkpoint, explicitly
pass ``xgb_model`` argument.

Parameters
----------
X :
    Feature matrix. See :ref:`py-data` for a list of supported types.

    When the ``tree_method`` is set to ``hist``, internally, the
    :py:class:`QuantileDMatrix` will be used instead of the :py:class:`DMatrix`
    for conserving memory. However, this has performance implications when the
    device of input data is not matched with algorithm. For instance, if the
    input is a numpy array on CPU but ``cuda`` is used for training, then the
    data is first processed on CPU then transferred to GPU.
y :
    Labels
sample_weight :
    instance weights
base_margin :
    global bias for each instance.
eval_set :
    A list of (X, y) tuple pairs to use as validation sets, for which
    metrics will be computed.
    Validation metrics will help us track the performance of the model.

eval_metric : str, list of str, or callable, optional

    .. deprecated:: 1.6.0

    Use `eval_metric` in :py:meth:`__init__` or :py:meth:`set_params` instead.

early_stopping_rounds : int

    .. deprecated:: 1.6.0

    Use `early_stopping_rounds` in :py:meth:`__init__` or :py:meth:`set_params`
    instead.
verbose :
    If `verbose` is True and an evaluation set is used, the evaluation metric
    measured on the validation set is printed to stdout at each boosting stage.
    If `verbose` is an integer, the evaluation metric is printed at each
    `verbose` boosting stage. The last boosting stage / the boosting stage found
    by using `early_stopping_rounds` is also printed.
xgb_model :
    file name of stored XGBoost model or 'Booster' instance XGBoost model to be
    loaded before training (allows training continuation).
sample_weight_eval_set :
    A list of the form [L_1, L_2, ..., L_n], where each L_i is an array like
    object storing instance weights for the i-th validation set.
base_margin_eval_set :
    A list of the form [M_1, M_2, ..., M_n], where each M_i is an array like
    object storing base margin for the i-th validation set.
feature_weights :
    Weight for each feature, defines the probability of each feature being
    selected when colsample is being used.  All values must be greater than 0,
    otherwise a `ValueError` is thrown.

callbacks :
    .. deprecated:: 1.6.0
        Use `callbacks` in :py:meth:`__init__` or :py:meth:`set_params` instead.

Reimplemented from xgboost.sklearn.XGBModel.

Reimplemented in xgboost.dask.DaskXGBRFClassifier.

Field Documentation

◆ end_note

str xgboost.dask.DaskXGBClassifier.end_note
static
Initial value:
= """
.. note::
For dask implementation, group is not supported, use qid instead.
""",

The documentation for this class was generated from the following file: