Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Data Fields
PredictorImputer Class Reference

Predictor Imputer - use all features in the matrix to predict value to impute selects randomly a value based on probability to get that value (similar to our gibbs) More...

#include <PredictorImputer.h>

Inheritance diagram for PredictorImputer:
FeatureProcessor SerializableObject

Public Member Functions

void init_defaults ()
 
void post_deserialization ()
 
void load_GIBBS (const GibbsSampler< float > &gibbs, const GibbsSamplingParams &sampling_args)
 
void load_GAN (const string &gan_path)
 
void load_MISSING ()
 
void load_sampler (unique_ptr< SamplesGenerator< float > > &&generator)
 
int init (map< string, string > &mapper)
 The parsed fields from init command.
 
int Learn (MedFeatures &features, unordered_set< int > &ids)
 
int _apply (MedFeatures &features, unordered_set< int > &ids)
 
- Public Member Functions inherited from FeatureProcessor
virtual string select_learn_matrix (const vector< string > &matrix_tags) const
 Will be called before learn to create new version for the matrix if needed - in parallel of existing matrix.
 
virtual void clear ()
 
void init_defaults ()
 
virtual void copy (FeatureProcessor *processor)
 
virtual void set_feature_name (const string &feature_name)
 
virtual string get_feature_name ()
 
virtual void get_feature_names (vector< string > &feature_names)
 
int learn (MedFeatures &features)
 PostProcess of MedFeatures - on all ids.
 
int learn (MedFeatures &features, unordered_set< int > &ids)
 
virtual int _apply (MedFeatures &features, unordered_set< int > &ids, bool learning)
 
virtual int _conditional_apply (MedFeatures &features, unordered_set< int > &ids, unordered_set< string > &req_features, bool learning)
 
int apply (MedFeatures &features, bool learning)
 PostProcess of MedFeatures - on all or a subset of the ids calls virtaul function "_apply/_conditional_apply" for the specific implementation.
 
int apply (MedFeatures &features, unordered_set< string > &req_features, bool learning)
 
int apply (MedFeatures &features, unordered_set< int > &ids, bool learning)
 
int apply (MedFeatures &features, unordered_set< int > &ids, unordered_set< string > &req_features, bool learning)
 
int apply (MedFeatures &features)
 
int apply (MedFeatures &features, unordered_set< string > &req_features)
 
int apply (MedFeatures &features, unordered_set< int > &ids)
 
int apply (MedFeatures &features, unordered_set< int > &ids, unordered_set< string > &req_features)
 
virtual int init (void *processor_params)
 
virtual int filter (unordered_set< string > &features)
 Filter according to a subset of features.
 
string resolve_feature_name (MedFeatures &features, string substr)
 Utility : get corresponding name in MedFeatures.
 
virtual bool are_features_affected (unordered_set< string > &out_req_features)
 check if a set of features is affected by the current processor
 
virtual void update_req_features_vec (unordered_set< string > &out_req_features, unordered_set< string > &in_req_features)
 update sets of required as input according to set required as output to processor Empty sets = require everything.
 
virtual bool is_selector ()
 allows testing if this feature processor is a selector
 
void * new_polymorphic (string derived_class_name)
 for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type)
 
size_t get_processor_size ()
 
size_t processor_serialize (unsigned char *blob)
 
virtual void dprint (const string &pref, int rp_flag)
 
- Public Member Functions inherited from SerializableObject
virtual int version () const
 Relevant for serializations.
 
virtual string my_class_name () const
 For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method.
 
virtual void serialized_fields_name (vector< string > &field_names) const
 The names of the serialized fields.
 
virtual void pre_serialization ()
 
virtual size_t get_size ()
 Gets bytes sizes for serializations.
 
virtual size_t serialize (unsigned char *blob)
 Serialiazing object to blob memory. return number ob bytes wrote to memory.
 
virtual size_t deserialize (unsigned char *blob)
 Deserialiazing blob to object. returns number of bytes read.
 
size_t serialize_vec (vector< unsigned char > &blob)
 
size_t deserialize_vec (vector< unsigned char > &blob)
 
virtual size_t serialize (vector< unsigned char > &blob)
 
virtual size_t deserialize (vector< unsigned char > &blob)
 
virtual int read_from_file (const string &fname)
 read and deserialize model
 
virtual int write_to_file (const string &fname)
 serialize model and write to file
 
virtual int read_from_file_unsafe (const string &fname)
 read and deserialize model without checking version number - unsafe read
 
int init_from_string (string init_string)
 Init from string.
 
int init_params_from_file (string init_file)
 
int init_param_from_file (string file_str, string &param)
 
int update_from_string (const string &init_string)
 
virtual int update (map< string, string > &map)
 Virtual to update object from parsed fields.
 
virtual string object_json () const
 

Data Fields

float missing_value
 missing value to look for to impute
 
bool verbose_learn
 if true will output more info when learning
 
bool verbose_apply
 if true will output verbose output in apply
 
string tag_search
 feature tag search
 
GeneratorType gen_type
 generator type
 
string generator_args
 for learn
 
string sampling_args
 args for sampling
 
- Data Fields inherited from FeatureProcessor
string feature_name = "unset_feature_name"
 Feature name ( + name as appears in MedFeatures) ;.
 
string resolved_feature_name
 
FeatureProcessorTypes processor_type = FTR_PROCESS_LAST
 
int learn_nthreads
 
int clean_nthreads
 

Additional Inherited Members

- Static Public Member Functions inherited from FeatureProcessor
static FeatureProcessormake_processor (string processor_name)
 
static FeatureProcessormake_processor (FeatureProcessorTypes type)
 
static FeatureProcessormake_processor (string processor_name, string params)
 
static FeatureProcessormake_processor (FeatureProcessorTypes type, string params)
 

Detailed Description

Predictor Imputer - use all features in the matrix to predict value to impute selects randomly a value based on probability to get that value (similar to our gibbs)

Member Function Documentation

◆ _apply()

int PredictorImputer::_apply ( MedFeatures features,
unordered_set< int > &  ids 
)
virtual

Reimplemented from FeatureProcessor.

◆ init()

int PredictorImputer::init ( map< string, string > &  mapper)
virtual

The parsed fields from init command.

if (it.first == "missing_value")
missing_value = med_stof(it.second);
else if (it.first == "generator_args")
generator_args = it.second;
else if (it.first == "verbose_learn")
verbose_learn = med_stoi(it.second) > 0;
else if (it.first == "sampling_args")
sampling_args = it.second;
else if (it.first == "verbose_apply")
verbose_apply = med_stoi(it.second) > 0;
else if (it.first == "tag_search" || it.first == "tag")
tag_search = it.second;
else if (it.first == "gen_type")
gen_type = GeneratorType_fromStr(it.second);
else if (it.first == "fp_type" || it.first == "use_parallel_learn" || it.first == "use_parallel_apply") {}
else
MTHROW_AND_ERR("Error in PredictorImputer::init - unsupported argument %s\n", it.first.c_str());
bool verbose_learn
if true will output more info when learning
Definition PredictorImputer.h:31
float missing_value
missing value to look for to impute
Definition PredictorImputer.h:30
string sampling_args
args for sampling
Definition PredictorImputer.h:37
string tag_search
feature tag search
Definition PredictorImputer.h:33
bool verbose_apply
if true will output verbose output in apply
Definition PredictorImputer.h:32
string generator_args
for learn
Definition PredictorImputer.h:36
GeneratorType gen_type
generator type
Definition PredictorImputer.h:35

[PredictorImputer::init]

[PredictorImputer::init]

Reimplemented from FeatureProcessor.

◆ Learn()

int PredictorImputer::Learn ( MedFeatures features,
unordered_set< int > &  ids 
)
virtual

Reimplemented from FeatureProcessor.

◆ post_deserialization()

void PredictorImputer::post_deserialization ( )
virtual

Reimplemented from SerializableObject.


The documentation for this class was generated from the following files: