Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Data Fields
GibbsSampler< T > Class Template Reference

A gibbs sampler - has learn and create sample based on mask. More...

#include <GibbsSampler.h>

Inheritance diagram for GibbsSampler< T >:
SerializableObject

Public Member Functions

void learn_gibbs (const map< string, vector< T > > &cohort_data)
 learn gibbs sample - for each feature creates predictors
 
void learn_gibbs (const map< string, vector< T > > &cohort_data, const vector< string > &learn_features, bool skip_missing)
 learn gibbs sample - for each feature creates predictors
 
void prepare_predictors ()
 Should be called before first get_samples when used in parallel manner.
 
void get_samples (map< string, vector< T > > &results, const GibbsSamplingParams &sampling_params, const vector< bool > *mask=NULL, const vector< T > *mask_values=NULL, bool print_progress=false)
 generates samples based on gibbs sampling process
 
void get_samples (map< string, vector< T > > &results, const GibbsSamplingParams &sampling_params, mt19937 &rnd_gen, const vector< bool > *mask=NULL, const vector< T > *mask_values=NULL, bool print_progress=false)
 generates samples based on gibbs sampling process.
 
void get_parallel_samples (map< string, vector< T > > &results, const GibbsSamplingParams &sampling_params, const vector< bool > *mask=NULL, const vector< T > *mask_values=NULL)
 generates samples based on gibbs sampling process - uses only burn rate and creates one sample and exits
 
void filter_samples (const map< string, vector< float > > &cohort_data, map< string, vector< T > > &results, const string &predictor_type, const string &predictor_args, float filter_sens)
 takes original cohort and results samples - filters and keep only samples that are similar to original population
 
int init (map< string, string > &map)
 initialized params init function. reffer to that
 
- Public Member Functions inherited from SerializableObject
virtual int version () const
 Relevant for serializations.
 
virtual string my_class_name () const
 For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method.
 
virtual void serialized_fields_name (vector< string > &field_names) const
 The names of the serialized fields.
 
virtual void * new_polymorphic (string derived_name)
 for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type)
 
virtual void pre_serialization ()
 
virtual void post_deserialization ()
 
virtual size_t get_size ()
 Gets bytes sizes for serializations.
 
virtual size_t serialize (unsigned char *blob)
 Serialiazing object to blob memory. return number ob bytes wrote to memory.
 
virtual size_t deserialize (unsigned char *blob)
 Deserialiazing blob to object. returns number of bytes read.
 
size_t serialize_vec (vector< unsigned char > &blob)
 
size_t deserialize_vec (vector< unsigned char > &blob)
 
virtual size_t serialize (vector< unsigned char > &blob)
 
virtual size_t deserialize (vector< unsigned char > &blob)
 
virtual int read_from_file (const string &fname)
 read and deserialize model
 
virtual int write_to_file (const string &fname)
 serialize model and write to file
 
virtual int read_from_file_unsafe (const string &fname)
 read and deserialize model without checking version number - unsafe read
 
int init_from_string (string init_string)
 Init from string.
 
int init_params_from_file (string init_file)
 
int init_param_from_file (string file_str, string &param)
 
int update_from_string (const string &init_string)
 
virtual int update (map< string, string > &map)
 Virtual to update object from parsed fields.
 
virtual string object_json () const
 

Data Fields

Gibbs_Params params
 gibbs params
 
vector< PredictorOrEmpty< T > > feats_predictors
 gibbs_feature generators based on predictors
 
vector< string > all_feat_names
 all features names (saved in learn)
 
vector< string > impute_feat_names
 all features names (saved in learn)
 
vector< vector< T > > uniqu_value_bins
 to round samples to those resoultions! - important for no leak!
 

Detailed Description

template<typename T>
class GibbsSampler< T >

A gibbs sampler - has learn and create sample based on mask.

Member Function Documentation

◆ get_samples()

template<typename T >
void GibbsSampler< T >::get_samples ( map< string, vector< T > > &  results,
const GibbsSamplingParams sampling_params,
mt19937 &  rnd_gen,
const vector< bool > *  mask = NULL,
const vector< T > *  mask_values = NULL,
bool  print_progress = false 
)

generates samples based on gibbs sampling process.

const and can be called parallel

◆ init()

template<typename T >
int GibbsSampler< T >::init ( map< string, string > &  map)
virtual

initialized params init function. reffer to that

Reimplemented from SerializableObject.


The documentation for this class was generated from the following files: