|
int | init (map< string, string > &mapper) |
| The parsed fields from init command.
|
|
int | set_params (map< string, string > &mapper) |
|
subGradientFunction | getSubGradients () |
| Subgradient of RMSE loss function.
|
|
subGradientFunction | getSubGradientsAUC () |
| Subgradient of smooth auc loss function.
|
|
subGradientFunction | getSubGradientsSvm () |
| Subgradient of svm loss function.
|
|
double | predict (const vector< float > &input) const |
|
void | predict (const vector< vector< float > > &inputs, vector< double > &preds) const |
| virtual to allow more efficeint implemention
|
|
PredictiveModel * | clone () const |
| copy model
|
|
void | print (const vector< string > &signalNames) const |
| print model to stdout
|
|
void | set_normalization (const vector< float > &meanShift, const vector< float > &factors) |
| Normalization.
|
|
void | apply_normalization (vector< vector< float > > &input) const |
| apply Normalization
|
|
void | get_normalization (vector< float > &meanShift, vector< float > &factors) const |
|
int | Learn (float *x, float *y, const float *w, int nsamples, int nftrs) |
| Learn should be implemented for each model.
|
|
int | Predict (float *x, float *&preds, int nsamples, int nftrs) const |
| Predict should be implemented for each model.
|
|
void | calc_feature_importance (vector< float > &features_importance_scores, const string &general_params, const MedFeatures *features) |
|
virtual int | init (void *classifier_params) |
|
int | init_from_string (string initialization_text) |
|
virtual void | init_defaults () |
|
virtual void | print (FILE *fp, const string &prefix, int level=0) const |
|
virtual int | n_preds_per_sample () const |
| Number of predictions per sample. typically 1 - but some models return several per sample (for example a probability vector)
|
|
virtual int | denormalize_model (float *f_avg, float *f_std, float label_avg, float label_std) |
|
int | learn (float *x, float *y, int nsamples, int nftrs) |
| simple no weights call
|
|
virtual int | learn (MedMat< float > &x, MedMat< float > &y, const vector< float > &wgts) |
| MedMat x,y : will transpose/normalize x,y if needed by algorithm The convention is that untransposed mats are always samples x features, and transposed are features x samples.
|
|
int | learn (MedMat< float > &x, MedMat< float > &y) |
| MedMat x,y : will transpose/normalize x,y if needed by algorithm The convention is that untransposed mats are always samples x features, and transposed are features x samples.
|
|
int | learn (MedMat< float > &x, vector< float > &y, const vector< float > &wgts) |
| MedMat x, vector y: will transpose normalize x if needed (y assumed to be normalized)
|
|
int | learn (MedMat< float > &x, vector< float > &y) |
| MedMat x, vector y: will transpose normalize x if needed (y assumed to be normalized)
|
|
int | learn (vector< float > &x, vector< float > &y, const vector< float > &wgts, int n_samples, int n_ftrs) |
| vector x,y: transpose/normalizations not done.
|
|
int | learn (vector< float > &x, vector< float > &y, int n_samples, int n_ftrs) |
| vector x,y: transpose/normalizations not done.
|
|
virtual int | predict (MedMat< float > &x, vector< float > &preds) const |
|
int | predict (vector< float > &x, vector< float > &preds, int n_samples, int n_ftrs) const |
|
int | threaded_predict (MedMat< float > &x, vector< float > &preds, int nthreads) const |
|
int | learn (const MedFeatures &features) |
|
int | learn (const MedFeatures &features, vector< string > &names) |
|
virtual int | predict (MedFeatures &features) const |
|
virtual void | calc_feature_importance (vector< float > &features_importance_scores, const string &general_params) |
| Feature Importance - assume called after learn.
|
|
virtual void | calc_feature_contribs (MedMat< float > &x, MedMat< float > &contribs) |
| Feature contributions explains the prediction on each sample (aka BUT_WHY)
|
|
virtual void | calc_feature_contribs_conditional (MedMat< float > &mat_x_in, unordered_map< string, float > &contiditional_variables, MedMat< float > &mat_x_out, MedMat< float > &mat_contribs) |
|
virtual void | export_predictor (const string &output_fname) |
|
int | learn_prob_calibration (MedMat< float > &x, vector< float > &y, vector< float > &min_range, vector< float > &max_range, vector< float > &map_prob, int min_bucket_size=10000, float min_score_jump=0.001, float min_prob_jump=0.005, bool fix_prob_order=false) |
| calibration for probability using training data
|
|
int | convert_scores_to_prob (const vector< float > &preds, const vector< float > &min_range, const vector< float > &max_range, const vector< float > &map_prob, vector< float > &probs) const |
| If you have ran learn_prob_calibration before, you have min_range,max_range,map_prob from This function - that is used to convert preds to probs.
|
|
int | learn_prob_calibration (MedMat< float > &x, vector< float > &y, int poly_rank, vector< double > ¶ms, int min_bucket_size=10000, float min_score_jump=0.001) |
| Will create probability bins using Platt scale method.
|
|
template<class T , class L > |
int | convert_scores_to_prob (const vector< T > &preds, const vector< double > ¶ms, vector< L > &converted) const |
| Converts probability from Platt scale model.
|
|
virtual bool | predict_single_not_implemented () |
| Prepartion function for fast prediction on single item each time.
|
|
virtual void | prepare_predict_single () |
|
virtual void | predict_single (const vector< float > &x, vector< float > &preds) const |
|
virtual void | predict_single (const vector< double > &x, vector< double > &preds) const |
|
virtual void | calc_feature_importance_shap (vector< float > &features_importance_scores, string &importance_type, const MedFeatures *features) |
|
void * | new_polymorphic (string derived_class_name) |
| for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type)
|
|
size_t | get_predictor_size () |
|
size_t | predictor_serialize (unsigned char *blob) |
|
virtual int | version () const |
| Relevant for serializations.
|
|
virtual string | my_class_name () const |
| For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method.
|
|
virtual void | serialized_fields_name (vector< string > &field_names) const |
| The names of the serialized fields.
|
|
virtual void | pre_serialization () |
|
virtual void | post_deserialization () |
|
virtual size_t | get_size () |
| Gets bytes sizes for serializations.
|
|
virtual size_t | serialize (unsigned char *blob) |
| Serialiazing object to blob memory. return number ob bytes wrote to memory.
|
|
virtual size_t | deserialize (unsigned char *blob) |
| Deserialiazing blob to object. returns number of bytes read.
|
|
size_t | serialize_vec (vector< unsigned char > &blob) |
|
size_t | deserialize_vec (vector< unsigned char > &blob) |
|
virtual size_t | serialize (vector< unsigned char > &blob) |
|
virtual size_t | deserialize (vector< unsigned char > &blob) |
|
virtual int | read_from_file (const string &fname) |
| read and deserialize model
|
|
virtual int | write_to_file (const string &fname) |
| serialize model and write to file
|
|
virtual int | read_from_file_unsafe (const string &fname) |
| read and deserialize model without checking version number - unsafe read
|
|
int | init_from_string (string init_string) |
| Init from string.
|
|
int | init_params_from_file (string init_file) |
|
int | init_param_from_file (string file_str, string ¶m) |
|
int | update_from_string (const string &init_string) |
|
virtual int | update (map< string, string > &map) |
| Virtual to update object from parsed fields.
|
|
virtual string | object_json () const |
|
| PredictiveModel (string name) |
| The name of the model.
|
|