|
| SGD (PredictiveModel *mdl, double(*loss_funct)(const vector< double > &got, const vector< float > &y, const vector< float > *weights)) |
|
void | Learn (const vector< vector< float > > &xData, const vector< float > &yData, int T_Steps, const vector< float > *weights=NULL, bool print_auc=false) |
|
void | set_gradient_params (int samplePointCnt, float h, int minSampForCat=0) |
|
void | set_learing_rate (float val) |
|
void | set_learing (float blockVals, float blockDerivate, int T_steps) |
|
void | set_special_step_func (double(*function)(const vector< double > &, const vector< float > &, const vector< double > &, const vector< float > *)) |
|
void | set_blocking (float val) |
|
void | set_model_precision (double val) |
|
double | get_model_precision () |
|
float | get_learing_rate () |
|
float | get_learing_eppsilon (float blockVals, float blockDerivate, int T_steps) |
|
PredictiveModel * | get_model () |
|
float | get_blocking () |
|
|
double(* | subGradientI )(int param_number, const vector< double > ¶m_values, const vector< vector< float > > &x, const vector< float > &y, const vector< float > *weights) |
|
size_t | output_num |
|
bool | norm_l1 |
|
The documentation for this class was generated from the following files:
- Internal/MedAlgo/MedAlgo/SGD.h
- Internal/MedAlgo/MedAlgo/SGD.cpp