Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Data Fields
FairnessPostProcessor Class Reference

A post-processor to adjust probability to fairness between groups. More...

#include <FairnessPostProcessor.h>

Inheritance diagram for FairnessPostProcessor:
PostProcessor SerializableObject

Public Member Functions

void init_post_processor (MedModel &mdl)
 
void parse_constrains (const string &s)
 parses the constrains
 
void get_input_fields (vector< Effected_Field > &fields) const
 List of fields that are used by this post_processor.
 
void get_output_fields (vector< Effected_Field > &fields) const
 List of fields that are being effected by this post_processor.
 
int init (map< string, string > &mapper)
 Global init for general args in all explainers.
 
void Learn (const MedFeatures &matrix)
 Learns from predictor and train_matrix (PostProcessor API)
 
void Apply (MedFeatures &matrix)
 
void dprint (const string &pref) const
 
- Public Member Functions inherited from PostProcessor
void * new_polymorphic (string dname)
 for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type)
 
virtual float get_use_p ()
 
virtual int get_use_split ()
 
- Public Member Functions inherited from SerializableObject
virtual int version () const
 Relevant for serializations.
 
virtual string my_class_name () const
 For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method.
 
virtual void serialized_fields_name (vector< string > &field_names) const
 The names of the serialized fields.
 
virtual void pre_serialization ()
 
virtual void post_deserialization ()
 
virtual size_t get_size ()
 Gets bytes sizes for serializations.
 
virtual size_t serialize (unsigned char *blob)
 Serialiazing object to blob memory. return number ob bytes wrote to memory.
 
virtual size_t deserialize (unsigned char *blob)
 Deserialiazing blob to object. returns number of bytes read.
 
size_t serialize_vec (vector< unsigned char > &blob)
 
size_t deserialize_vec (vector< unsigned char > &blob)
 
virtual size_t serialize (vector< unsigned char > &blob)
 
virtual size_t deserialize (vector< unsigned char > &blob)
 
virtual int read_from_file (const string &fname)
 read and deserialize model
 
virtual int write_to_file (const string &fname)
 serialize model and write to file
 
virtual int read_from_file_unsafe (const string &fname)
 read and deserialize model without checking version number - unsafe read
 
int init_from_string (string init_string)
 Init from string.
 
int init_params_from_file (string init_file)
 
int init_param_from_file (string file_str, string &param)
 
int update_from_string (const string &init_string)
 
virtual int update (map< string, string > &map)
 Virtual to update object from parsed fields.
 
virtual string object_json () const
 

Data Fields

string feature_name
 feautre name to search in matrix created by model_json to generate group for fairness
 
string model_json
 model json path - important for learn
 
float reference_group_val = MED_MAT_MISSING_VALUE
 the value for the feature used as refernce group for fairness
 
Fairness_Target_Type fairness_target_type
 fairness target - SENS of SPEC
 
vector< Cutoff_Constraintconstraints
 list of constraints cutoffs. Init with comma seperated list for each constraint. The type is prefix with ":". For example Score: PR: SENS:
 
double resulotion = 0.1
 resulotion for target matching. effect speed/accuracy
 
double allow_distance_score = 1.0
 max distance allow between score
 
double allow_distance_target = 5.0
 max distance allow between target
 
double allow_distance_cutoff_constraint = 1.0
 max distance allow between constraint
 
int score_bin_count = 5000
 how much bins for score. 0 means no binning
 
float score_resulotion = 0
 if >0 will apply score resulotion for speedup
 
MedPidRepositoryp_rep
 required for building model for generating model (set by process)
 
MedModel group_feature_gen_model
 model for generating features for priors (set in learn)
 
string resolved_name
 resolved feature name (value is set after learn)
 
- Data Fields inherited from PostProcessor
PostProcessorTypes processor_type = PostProcessorTypes::FTR_POSTPROCESS_LAST
 
int use_split = -1
 
float use_p = 0.0
 

Additional Inherited Members

- Static Public Member Functions inherited from PostProcessor
static PostProcessormake_processor (const string &processor_name, const string &params="")
 
static PostProcessormake_processor (PostProcessorTypes type, const string &params="")
 
static PostProcessorcreate_processor (string &params)
 

Detailed Description

A post-processor to adjust probability to fairness between groups.

The calibration will fit between constraints thresholds linear transformation A*X+B, to optimize some value The constraint will reduce 1 degree of freedom from the equation.

Member Function Documentation

◆ Apply()

void FairnessPostProcessor::Apply ( MedFeatures matrix)
virtual

Reimplemented from PostProcessor.

◆ dprint()

void FairnessPostProcessor::dprint ( const string &  pref) const
virtual

Reimplemented from PostProcessor.

◆ get_input_fields()

void FairnessPostProcessor::get_input_fields ( vector< Effected_Field > &  fields) const
virtual

List of fields that are used by this post_processor.

Reimplemented from PostProcessor.

◆ get_output_fields()

void FairnessPostProcessor::get_output_fields ( vector< Effected_Field > &  fields) const
virtual

List of fields that are being effected by this post_processor.

Options: "prediction:X", "attr:$NAME", "str_attr:$NAME", "feature:$NAME", "json"

Reimplemented from PostProcessor.

◆ init()

int FairnessPostProcessor::init ( map< string, string > &  mapper)
virtual

Global init for general args in all explainers.

Reimplemented from SerializableObject.

◆ init_post_processor()

void FairnessPostProcessor::init_post_processor ( MedModel mdl)
inlinevirtual

Reimplemented from PostProcessor.

◆ Learn()

void FairnessPostProcessor::Learn ( const MedFeatures matrix)
virtual

Learns from predictor and train_matrix (PostProcessor API)

Reimplemented from PostProcessor.


The documentation for this class was generated from the following files: