Medial Code Documentation
|
#include <vector>
#include <SerializableObject/SerializableObject/SerializableObject.h>
#include "MedSamples.h"
#include "MedModel.h"
#include "Effected_Field.h"
Go to the source code of this file.
Data Structures | |
class | PostProcessor |
An Abstract PostProcessor class. More... | |
class | MultiPostProcessor |
A wrapper for parallel call to post_processors group. More... | |
Functions | |
PostProcessorTypes | post_processor_name_to_type (const string &post_processor) |
enum PostProcessorTypes |
Enumerator | |
---|---|
FTR_POSTPROCESS_MULTI | "multi_processor" or "multi" to create MultiPostProcessor |
FTR_POSTPROCESS_CALIBRATOR | "calibrator" to create Calibrator |
FTR_POSTPROCESS_TREE_SHAP | "tree_shap" to create TreeExplainer to explain tree mode or mimic generic model with trees model |
FTR_POSTPROCESS_SHAPLEY | "shapley" to create ShapleyExplainer - model agnostic shapley explainer for model. sample masks using gibbs or GAN |
FTR_POSTPROCESS_MISSING_SHAP | "missing_shap" to create MissingShapExplainer - model agnostic shapley algorithm on trained model to handle prediciton with missing values(retrains new model). much faster impl, because gibbs/GAN is not needed |
FTR_POSTPROCESS_LIME_SHAP | "lime_shap" to create LimeExplainer - model agnostic shapley algorithm with lime on shap values sampling |
FTR_POSTPROCESS_KNN_EXPLAIN | "knn" Explainer built on knn principles KNN_Explainer |
FTR_POSTPROCESS_LINEAR | "linear" to create LinearExplainer to explain linear model - importance is score change when putting zero in the feature/group of features |
FTR_POSTPROCESS_ITERATIVE_SET | "iterative_set" to create IterativeSetExplainer - model agnostic iterative explainer for model. sample masks using gibbs or GAN |
FTR_POSTPROCESS_AGGREGATE_PREDS | "aggregate_preds" to create AggregatePredsPostProcessor - averaging model predictions after resampling |
FTR_POSTPROCESS_ADJUST | "adjust_probs" to adjust model calibrated predictions according to priors. Creates ProbAdjustPostProcessor |
FTR_POSTPROCESS_FAIRNESS | "fairness_adjust" to adjust model calibrated predictions according to priors. Creates ProbAdjustPostProcessor |