training parameters for regression tree
More...
#include <param.h>
|
| enum | TreeGrowPolicy { kDepthWise = 0
, kLossGuide = 1
} |
| |
| enum | SamplingMethod { kUniform = 0
, kGradientBased = 1
} |
| |
|
|
| DMLC_DECLARE_PARAMETER (TrainParam) |
| |
|
bool | NeedPrune (double loss_chg, int depth) const |
| | given the loss change, whether we need to invoke pruning
|
| |
|
bst_node_t | MaxNodes () const |
| |
|
Args | UpdateAllowUnknown (Container const &kwargs) |
| |
|
bool | GetInitialised () const |
| |
|
|
static constexpr double | DftSparseThreshold () |
| |
|
|
float | learning_rate |
| |
|
float | min_split_loss |
| |
|
int | max_depth |
| |
|
int | max_leaves |
| |
|
int | max_bin |
| |
|
int | grow_policy |
| |
|
uint32_t | max_cat_to_onehot {4} |
| |
|
bst_bin_t | max_cat_threshold {64} |
| |
|
float | min_child_weight |
| |
|
float | reg_lambda |
| |
|
float | reg_alpha |
| |
|
float | max_delta_step |
| |
|
float | subsample |
| |
|
int | sampling_method |
| |
|
float | colsample_bynode |
| |
|
float | colsample_bylevel |
| |
|
float | colsample_bytree |
| |
|
float | sketch_ratio |
| |
|
bool | cache_opt |
| |
|
bool | refresh_leaf |
| |
|
std::vector< int > | monotone_constraints |
| |
|
std::string | interaction_constraints |
| |
|
double | sparse_threshold {DftSparseThreshold()} |
| |
training parameters for regression tree
The documentation for this struct was generated from the following file: