|
Medial Code Documentation
|
Functions | |
| float | get_basescore (xgb.XGBModel model) |
| None | check_init_estimation (str tree_method) |
| None | check_quantile_loss (str tree_method, bool weighted) |
| None | check_cut (int n_entries, np.ndarray indptr, np.ndarray data, Any dtypes) |
| None | check_get_quantile_cut_device (str tree_method, bool use_cupy) |
| None | check_get_quantile_cut (str tree_method) |
| None | check_categorical_ohe (int rows, int cols, int rounds, int cats, str device, str tree_method) |
| None | check_categorical_missing (int rows, int cols, int cats, str device, str tree_method) |
| Dict[str, Any] | train_result (Dict[str, Any] param, xgb.DMatrix dmat, int num_rounds) |
Variables | |
| USE_ONEHOT = np.iinfo(np.int32).max | |
| int | USE_PART = 1 |
Tests for updaters.
| None xgboost.testing.updater.check_categorical_missing | ( | int | rows, |
| int | cols, | ||
| int | cats, | ||
| str | device, | ||
| str | tree_method | ||
| ) |
Check categorical data with missing values.
| None xgboost.testing.updater.check_cut | ( | int | n_entries, |
| np.ndarray | indptr, | ||
| np.ndarray | data, | ||
| Any | dtypes | ||
| ) |
Check the cut values.
| None xgboost.testing.updater.check_get_quantile_cut | ( | str | tree_method | ) |
Check the quantile cut getter.
| None xgboost.testing.updater.check_get_quantile_cut_device | ( | str | tree_method, |
| bool | use_cupy | ||
| ) |
Check with optional cupy.
| None xgboost.testing.updater.check_init_estimation | ( | str | tree_method | ) |
Test for init estimation.
| None xgboost.testing.updater.check_quantile_loss | ( | str | tree_method, |
| bool | weighted | ||
| ) |
Test for quantile loss.
| float xgboost.testing.updater.get_basescore | ( | xgb.XGBModel | model | ) |
Get base score from an XGBoost sklearn estimator.
| Dict[str, Any] xgboost.testing.updater.train_result | ( | Dict[str, Any] | param, |
| xgb.DMatrix | dmat, | ||
| int | num_rounds | ||
| ) |
Get training result from parameters and data.