|
|
None | __init__ (self, _CVFolds cvfolds) |
| |
| None | update (self, int iteration, Optional[Objective] obj) |
| |
| List[str] | eval (self, int iteration, Optional[Metric] feval, bool output_margin) |
| |
| Any | set_attr (self, **Optional[Any] kwargs) |
| |
| Optional[str] | attr (self, str key) |
| |
| None | set_param (self, Union[Dict, Iterable[Tuple[str, Any]], str] params, Optional[str] value=None) |
| |
| int | num_boosted_rounds (self) |
| |
| int | best_iteration (self) |
| |
| None | best_iteration (self, int iteration) |
| |
| float | best_score (self) |
| |
|
None | best_score (self, float score) |
| |
◆ attr()
| Optional[str] xgboost.training._PackedBooster.attr |
( |
|
self, |
|
|
str |
key |
|
) |
| |
Redirect to booster attr.
◆ best_iteration() [1/2]
| int xgboost.training._PackedBooster.best_iteration |
( |
|
self | ) |
|
◆ best_iteration() [2/2]
| None xgboost.training._PackedBooster.best_iteration |
( |
|
self, |
|
|
int |
iteration |
|
) |
| |
◆ best_score()
| float xgboost.training._PackedBooster.best_score |
( |
|
self | ) |
|
◆ eval()
| List[str] xgboost.training._PackedBooster.eval |
( |
|
self, |
|
|
int |
iteration, |
|
|
Optional[Metric] |
feval, |
|
|
bool
|
output_margin |
|
) |
| |
Iterate through folds for eval
◆ num_boosted_rounds()
| int xgboost.training._PackedBooster.num_boosted_rounds |
( |
|
self | ) |
|
Number of boosted rounds.
◆ set_attr()
| Any xgboost.training._PackedBooster.set_attr |
( |
|
self, |
|
|
**Optional[Any] |
kwargs |
|
) |
| |
Iterate through folds for setting attributes
◆ set_param()
| None xgboost.training._PackedBooster.set_param |
( |
|
self, |
|
|
Union[Dict, Iterable[Tuple[str, Any]], str] |
params, |
|
|
Optional[str] |
value = None |
|
) |
| |
Iterate through folds for set_param
◆ update()
| None xgboost.training._PackedBooster.update |
( |
|
self, |
|
|
int |
iteration, |
|
|
Optional[Objective] |
obj |
|
) |
| |
Iterate through folds for update
The documentation for this class was generated from the following file:
- External/xgboost/python-package/xgboost/training.py