|
| void | Configure (Args const &args) override |
| | Configure the objective with the specified parameters.
|
| |
| void | SaveConfig (Json *p_out) const override |
| | Save configuration to JSON object.
|
| |
| void | LoadConfig (Json const &in) override |
| | Load configuration from JSON object.
|
| |
| ObjInfo | Task () const override |
| | Return task of this objective.
|
| |
| bst_target_t | Targets (MetaInfo const &info) const override |
| | Return number of targets for input matrix.
|
| |
|
const char * | RankEvalMetric (StringView metric) const |
| |
|
void | GetGradient (HostDeviceVector< float > const &predt, MetaInfo const &info, std::int32_t iter, HostDeviceVector< GradientPair > *out_gpair) override |
| |
|
| ~ObjFunction () override=default |
| | virtual destructor
|
| |
| virtual void | GetGradient (const HostDeviceVector< bst_float > &preds, const MetaInfo &info, int iteration, HostDeviceVector< GradientPair > *out_gpair)=0 |
| | Get gradient over each of predictions, given existing information.
|
| |
| virtual const char * | DefaultEvalMetric () const =0 |
| |
| virtual Json | DefaultMetricConfig () const |
| | Return the configuration for the default metric.
|
| |
| virtual void | PredTransform (HostDeviceVector< bst_float > *) const |
| | transform prediction values, this is only called when Prediction is called
|
| |
| virtual void | EvalTransform (HostDeviceVector< bst_float > *io_preds) |
| | transform prediction values, this is only called when Eval is called, usually it redirect to PredTransform
|
| |
| virtual bst_float | ProbToMargin (bst_float base_score) const |
| | transform probability value back to margin this is used to transform user-set base_score back to margin used by gradient boosting
|
| |
| virtual void | InitEstimation (MetaInfo const &info, linalg::Tensor< float, 1 > *base_score) const |
| | Make initialize estimation of prediction.
|
| |
| virtual void | UpdateTreeLeaf (HostDeviceVector< bst_node_t > const &, MetaInfo const &, float, HostDeviceVector< float > const &, std::int32_t, RegTree *) const |
| | Update the leaf values after a tree is built.
|
| |
template<typename Loss, typename
Cache>
class xgboost::obj::LambdaRankObj< Loss, Cache >
Base class for pair-wise learning to rank.
See From RankNet to LambdaRank to LambdaMART: An Overview for a description of the algorithm.
In addition to ranking, this also implements Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm.