|
Medial Code Documentation
|
Public Member Functions | |
| None | __init__ (self, int rounds, Optional[str] metric_name=None, Optional[str] data_name=None, Optional[bool] maximize=None, Optional[bool] save_best=False, float min_delta=0.0) |
| _Model | before_training (self, _Model model) |
| bool | after_iteration (self, _Model model, int epoch, TrainingCallback.EvalsLog evals_log) |
| _Model | after_training (self, _Model model) |
Public Member Functions inherited from xgboost.callback.TrainingCallback | |
| bool | before_iteration (self, _Model model, int epoch, EvalsLog evals_log) |
Data Fields | |
| data | |
| metric_name | |
| rounds | |
| save_best | |
| maximize | |
| starting_round | |
| current_rounds | |
Protected Member Functions | |
| bool | _update_rounds (self, _Score score, str name, str metric, _Model model, int epoch) |
Protected Attributes | |
| _min_delta | |
Additional Inherited Members | |
Static Public Attributes inherited from xgboost.callback.TrainingCallback | |
| EvalsLog = Dict[str, Dict[str, _ScoreList]] | |
Callback function for early stopping
.. versionadded:: 1.3.0
Parameters
----------
rounds :
Early stopping rounds.
metric_name :
Name of metric that is used for early stopping.
data_name :
Name of dataset that is used for early stopping.
maximize :
Whether to maximize evaluation metric. None means auto (discouraged).
save_best :
Whether training should return the best model or the last model.
min_delta :
.. versionadded:: 1.5.0
Minimum absolute change in score to be qualified as an improvement.
Examples
--------
.. code-block:: python
es = xgboost.callback.EarlyStopping(
rounds=2,
min_delta=1e-3,
save_best=True,
maximize=False,
data_name="validation_0",
metric_name="mlogloss",
)
clf = xgboost.XGBClassifier(tree_method="hist", device="cuda", callbacks=[es])
X, y = load_digits(return_X_y=True)
clf.fit(X, y, eval_set=[(X, y)])
| None xgboost.callback.EarlyStopping.__init__ | ( | self, | |
| int | rounds, | ||
| Optional[str] | metric_name = None, |
||
| Optional[str] | data_name = None, |
||
| Optional[bool] | maximize = None, |
||
| Optional[bool] | save_best = False, |
||
| float | min_delta = 0.0 |
||
| ) |
Reimplemented from xgboost.callback.TrainingCallback.
| bool xgboost.callback.EarlyStopping.after_iteration | ( | self, | |
| _Model | model, | ||
| int | epoch, | ||
| TrainingCallback.EvalsLog | evals_log | ||
| ) |
Run after each iteration. Return True when training should stop.
Reimplemented from xgboost.callback.TrainingCallback.
| _Model xgboost.callback.EarlyStopping.after_training | ( | self, | |
| _Model | model | ||
| ) |
Run after training is finished.
Reimplemented from xgboost.callback.TrainingCallback.
| _Model xgboost.callback.EarlyStopping.before_training | ( | self, | |
| _Model | model | ||
| ) |
Run before training starts.
Reimplemented from xgboost.callback.TrainingCallback.