|
Medial Code Documentation
|
Use a model to generate predictions to be used as features. More...
#include <FeatureGenerator.h>
Public Member Functions | |
| void | set_names () |
| Naming. | |
| int | init (map< string, string > &mapper) |
| The parsed fields from init command. | |
| int | init_from_model () |
| void | override_predictions (MedSamples &inSamples, MedSamples &modelSamples) |
| Use a given vector of predictions instead of applying model. | |
| void | prepare (MedFeatures &features, MedPidRepository &rep, MedSamples &samples) |
| Do the actual prediction prior to feature generation ... | |
| int | _learn (MedPidRepository &rep, const MedSamples &samples, vector< RepProcessor * > processors) |
| learn method | |
| int | _generate (PidDynamicRec &rec, MedFeatures &features, int index, int num, vector< float * > &_p_data) |
| generate a new feature | |
| void | modifySampleTime (MedSamples &samples, int time) |
Public Member Functions inherited from FeatureGenerator | |
| virtual void | get_p_data (MedFeatures &features, vector< float * > &_p_data) |
| void | get_p_data (MedFeatures &features) |
| virtual void | clear () |
| void | get_required_signal_names (unordered_set< string > &signalNames) |
| virtual void | set_required_signal_ids (MedDictionarySections &dict) |
| void | get_required_signal_ids (unordered_set< int > &signalIds) |
| virtual void | get_generated_features (unordered_set< string > &names_list) |
| virtual void | set_signal_ids (MedSignals &sigs) |
| virtual void | init_tables (MedDictionarySections &dict) |
| virtual void | fit_for_repository (MedPidRepository &rep) |
| Prepartion and adjustment for model based on repository. | |
| int | learn (MedPidRepository &rep, const MedSamples &samples, vector< RepProcessor * > processors) |
| int | learn (MedPidRepository &rep, const MedSamples &samples) |
| int | _generate (PidDynamicRec &in_rep, MedFeatures &features, int index, int num) |
| int | generate (PidDynamicRec &in_rep, MedFeatures &features, int index, int num) |
| int | generate (PidDynamicRec &in_rep, MedFeatures &features) |
| int | generate (MedPidRepository &rep, int id, MedFeatures &features) |
| int | generate (MedPidRepository &rep, int id, MedFeatures &features, int index, int num) |
| virtual int | _generate (MedFeatures &features) |
| int | generate (MedFeatures &features) |
| virtual int | init (void *generator_params) |
| virtual void | init_defaults () |
| virtual void | copy (FeatureGenerator *generator) |
| virtual int | nfeatures () |
| virtual void | get_required_signal_categories (unordered_map< string, vector< string > > &signal_categories_in_use) const |
| returns for each used signal it's used categories | |
| virtual int | filter_features (unordered_set< string > &validFeatures) |
| summary> prints summary of generator job. | |
| virtual void | make_summary () |
| void * | new_polymorphic (string derived_class_name) |
| for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type) | |
| size_t | get_generator_size () |
| size_t | generator_serialize (unsigned char *blob) |
| virtual void | print () |
| virtual void | dprint (const string &pref, int fg_flag) |
Public Member Functions inherited from SerializableObject | |
| virtual int | version () const |
| Relevant for serializations. | |
| virtual string | my_class_name () const |
| For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method. | |
| virtual void | serialized_fields_name (vector< string > &field_names) const |
| The names of the serialized fields. | |
| virtual void | pre_serialization () |
| virtual void | post_deserialization () |
| virtual size_t | get_size () |
| Gets bytes sizes for serializations. | |
| virtual size_t | serialize (unsigned char *blob) |
| Serialiazing object to blob memory. return number ob bytes wrote to memory. | |
| virtual size_t | deserialize (unsigned char *blob) |
| Deserialiazing blob to object. returns number of bytes read. | |
| size_t | serialize_vec (vector< unsigned char > &blob) |
| size_t | deserialize_vec (vector< unsigned char > &blob) |
| virtual size_t | serialize (vector< unsigned char > &blob) |
| virtual size_t | deserialize (vector< unsigned char > &blob) |
| virtual int | read_from_file (const string &fname) |
| read and deserialize model | |
| virtual int | write_to_file (const string &fname) |
| serialize model and write to file | |
| virtual int | read_from_file_unsafe (const string &fname) |
| read and deserialize model without checking version number - unsafe read | |
| int | init_from_string (string init_string) |
| Init from string. | |
| int | init_params_from_file (string init_file) |
| int | init_param_from_file (string file_str, string ¶m) |
| int | update_from_string (const string &init_string) |
| virtual int | update (map< string, string > &map) |
| Virtual to update object from parsed fields. | |
| virtual string | object_json () const |
Data Fields | |
| string | modelFile = "" |
| File for serialized model. | |
| MedModel * | model = NULL |
| model | |
| string | modelName = "" |
| name of final feature | |
| string | model_json = "" |
| path load json and train model for this. | |
| string | model_train_samples = "" |
| path train model samples. | |
| bool | ensure_patient_ids = true |
| if true will ensure the ids are the same as curretn training samples | |
| int | n_preds = 1 |
| how many features to create | |
| int | impute_existing_feature = 0 |
| If true will use model to impute an existing feature (determined by model name. Otherwise - generate new feature(s) | |
| int | use_overriden_predictions = 0 |
| Use a given vector of predictions instead of applying model. | |
| int | time_unit_win = global_default_windows_time_unit |
| the time unit in which the times are given. Default: global_default_windows_time_unit | |
| int | time_unit_sig = global_default_windows_time_unit |
| the time init in which the signal is given. (set correctly from Repository in learn and Generate) | |
| vector< int > | times |
Data Fields inherited from FeatureGenerator | |
| FeatureGeneratorTypes | generator_type = FTR_GEN_LAST |
| Type. | |
| vector< string > | names |
| Feature name. | |
| int | learn_nthreads = 16 |
| int | pred_nthreads = 16 |
| float | missing_val = (float)MED_MAT_MISSING_VALUE |
| Missing value. | |
| vector< string > | tags |
| Tags - for defining labels or groups. may be used later for filtering for example. | |
| int | iGenerateWeights = 0 |
| Feature/Weights generator. | |
| vector< float * > | p_data |
| vector< string > | req_signals |
| vector< int > | req_signal_ids |
| int | serial_id |
Additional Inherited Members | |
Static Public Member Functions inherited from FeatureGenerator | |
| static FeatureGenerator * | make_generator (string name) |
| static FeatureGenerator * | make_generator (string name, string params) |
| static FeatureGenerator * | make_generator (FeatureGeneratorTypes type) |
| static FeatureGenerator * | make_generator (FeatureGeneratorTypes type, string params) |
| static FeatureGenerator * | create_generator (string ¶ms) |
Use a model to generate predictions to be used as features.
|
virtual |
generate a new feature
Reimplemented from FeatureGenerator.
|
virtual |
learn method
Reimplemented from FeatureGenerator.
|
virtual |
The parsed fields from init command.
Reimplemented from FeatureGenerator.
| void ModelFeatGenerator::override_predictions | ( | MedSamples & | inSamples, |
| MedSamples & | modelSamples | ||
| ) |
Use a given vector of predictions instead of applying model.
Load predictions from a MedSamples object. Compare to the models MedSamples (unless empty)
|
virtual |
Do the actual prediction prior to feature generation ...
Reimplemented from FeatureGenerator.
|
virtual |
Naming.
Reimplemented from FeatureGenerator.