|
Medial Code Documentation
|
IterativeFeatureSelector - Apply bottom-up or top-down iteration for feature selection. More...
#include <FeatureProcess.h>
Public Member Functions | |
| int | init (map< string, string > &mapper) |
| The parsed fields from init command. | |
| virtual void | init_defaults () |
| void | init_bootstrap_cohort (MedBootstrapResult &bootstrapper, string &init) |
| void | init_bootstrap_params (MedBootstrapResult &bootstrapper, string &init) |
| virtual void | copy (FeatureProcessor *processor) |
| void | print_report (string &fileName) |
| void | retrace (MedFeatures &features, unordered_set< int > &ids, vector< string > &families_order, int start, int end) |
| void | retrace (MedFeatures &features, vector< string > &families_order, int start, int end) |
| ADD_SERIALIZATION_FUNCS(processor_type, predictor, predictor_params, predictor_params_vec, nfolds, folds, mode, rates_vec, cohort_params, bootstrap_params, msr_params, work_on_sets, required, ignored, numToSelect, selected, report, do_internal_cv, grouping_mode) private int | _learn (MedFeatures &features, unordered_set< int > &ids) |
| Find set of selected features. | |
| void | get_rates_vec () |
| void | read_params_vec () |
| void | get_features_families (MedFeatures &features, map< string, vector< string > > &featureFamilies) |
| void | prepare_for_iterations (MedBootstrapResult &bootstrapper, MedFeatures &features, vector< int > &folds, vector< vector< int > > &trainRows, vector< vector< int > > &testRows, vector< vector< float > > &trainLabels, vector< vector< MedSample > > &testSamples, MedFeatures &bootstrapFeatures) |
| void | pre_learn (MedFeatures &features, MedBootstrapResult &bootstrapper, map< string, vector< string > > &featureFamilies, vector< int > &orig_folds) |
| void | doTop2BottomSelection (MedFeatures &features, map< string, vector< string > > &featureFamilies, MedBootstrapResult &bootstrapper) |
| void | doBottom2TopSelection (MedFeatures &features, map< string, vector< string > > &featureFamilies, MedBootstrapResult &bootstrapper) |
| void | retraceTop2BottomSelection (MedFeatures &features, map< string, vector< string > > &featureFamilies, MedBootstrapResult &bootstrapper, vector< string > &order, int start, int end) |
| void | retraceBottom2TopSelection (MedFeatures &features, map< string, vector< string > > &featureFamilies, MedBootstrapResult &bootstrapper, vector< string > &order, int start, int end) |
Public Member Functions inherited from FeatureSelector | |
| virtual int | Learn (MedFeatures &features, unordered_set< int > &ids) |
| Find set of selected features- Calls _learn function, and may be overrided directly. | |
| virtual int | _apply (MedFeatures &features, unordered_set< int > &ids) |
| Apply selection. | |
| virtual int | _conditional_apply (MedFeatures &features, unordered_set< int > &ids, unordered_set< string > &out_req_features) |
| bool | is_selector () |
| allows testing if this feature processor is a selector | |
| bool | are_features_affected (unordered_set< string > &out_req_features) |
| check if a set of features is affected by the current processor | |
| void | update_req_features_vec (unordered_set< string > &out_req_features, unordered_set< string > &in_req_features) |
| update sets of required as input according to set required as output to processor | |
Public Member Functions inherited from FeatureProcessor | |
| virtual string | select_learn_matrix (const vector< string > &matrix_tags) const |
| Will be called before learn to create new version for the matrix if needed - in parallel of existing matrix. | |
| virtual void | clear () |
| void | init_defaults () |
| virtual void | set_feature_name (const string &feature_name) |
| virtual string | get_feature_name () |
| virtual void | get_feature_names (vector< string > &feature_names) |
| int | learn (MedFeatures &features) |
| PostProcess of MedFeatures - on all ids. | |
| int | learn (MedFeatures &features, unordered_set< int > &ids) |
| virtual int | _apply (MedFeatures &features, unordered_set< int > &ids, bool learning) |
| virtual int | _conditional_apply (MedFeatures &features, unordered_set< int > &ids, unordered_set< string > &req_features, bool learning) |
| int | apply (MedFeatures &features, bool learning) |
| PostProcess of MedFeatures - on all or a subset of the ids calls virtaul function "_apply/_conditional_apply" for the specific implementation. | |
| int | apply (MedFeatures &features, unordered_set< string > &req_features, bool learning) |
| int | apply (MedFeatures &features, unordered_set< int > &ids, bool learning) |
| int | apply (MedFeatures &features, unordered_set< int > &ids, unordered_set< string > &req_features, bool learning) |
| int | apply (MedFeatures &features) |
| int | apply (MedFeatures &features, unordered_set< string > &req_features) |
| int | apply (MedFeatures &features, unordered_set< int > &ids) |
| int | apply (MedFeatures &features, unordered_set< int > &ids, unordered_set< string > &req_features) |
| virtual int | init (void *processor_params) |
| virtual int | filter (unordered_set< string > &features) |
| Filter according to a subset of features. | |
| string | resolve_feature_name (MedFeatures &features, string substr) |
| Utility : get corresponding name in MedFeatures. | |
| void * | new_polymorphic (string derived_class_name) |
| for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type) | |
| size_t | get_processor_size () |
| size_t | processor_serialize (unsigned char *blob) |
| virtual void | dprint (const string &pref, int rp_flag) |
Public Member Functions inherited from SerializableObject | |
| virtual int | version () const |
| Relevant for serializations. | |
| virtual string | my_class_name () const |
| For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method. | |
| virtual void | serialized_fields_name (vector< string > &field_names) const |
| The names of the serialized fields. | |
| virtual void | pre_serialization () |
| virtual void | post_deserialization () |
| virtual size_t | get_size () |
| Gets bytes sizes for serializations. | |
| virtual size_t | serialize (unsigned char *blob) |
| Serialiazing object to blob memory. return number ob bytes wrote to memory. | |
| virtual size_t | deserialize (unsigned char *blob) |
| Deserialiazing blob to object. returns number of bytes read. | |
| size_t | serialize_vec (vector< unsigned char > &blob) |
| size_t | deserialize_vec (vector< unsigned char > &blob) |
| virtual size_t | serialize (vector< unsigned char > &blob) |
| virtual size_t | deserialize (vector< unsigned char > &blob) |
| virtual int | read_from_file (const string &fname) |
| read and deserialize model | |
| virtual int | write_to_file (const string &fname) |
| serialize model and write to file | |
| virtual int | read_from_file_unsafe (const string &fname) |
| read and deserialize model without checking version number - unsafe read | |
| int | init_from_string (string init_string) |
| Init from string. | |
| int | init_params_from_file (string init_file) |
| int | init_param_from_file (string file_str, string ¶m) |
| int | update_from_string (const string &init_string) |
| virtual int | update (map< string, string > &map) |
| Virtual to update object from parsed fields. | |
| virtual string | object_json () const |
Data Fields | |
| string | predictor |
| the predictor type - same as in the json file: qrf,lightgbm... | |
| string | predictor_params |
| the predictor parameters | |
| string | predictor_params_file |
| File with nFeatures-dependent predictor parameters. | |
| int | nfolds = 5 |
| number of folds for cross-validation | |
| bool | do_internal_cv = true |
| use nfolds and create internal splits (if false, uses original samples' splits | |
| vector< int > | folds |
| if given, perform only subset of the possible 'nfolds' folds in cross-validation | |
| string | mode = "top2bottom" |
| 'top2bottom' or 'bottom2top' | |
| string | rates = "50:1,100:2,500:5,5000:10" |
| instruction on rate of selection - comma separated pairs : #-bound:step | |
| string | cohort_params |
| cohort parameters for bootstrap performance evaluation (type:from,to/type:from,to/....) | |
| string | bootstrap_params = "sample_per_pid:1" |
| parameters for bootstrapping ('/' separaters) | |
| string | msr_params = "AUC" |
| measurements parameters for bootstrap performance evaluation | |
| bool | work_on_sets = false |
| work on sets of features according to signals | |
| bool | group_to_sigs = false |
| If true will group ungroupd_names to signals. | |
| unordered_set< string > | ungroupd_names = { "Drug","RC","ICD9" } |
| features-names (NAME in FTR_####.NAME) not to be grouped even in work_on_sets mode. | |
| unordered_set< string > | ignored |
| features to ignore in selection process | |
| bool | verbose |
| print all feature importance | |
| string | progress_file_path = "" |
| file path to progress file | |
| string | grouping_mode = "BY_SIGNAL_CATEG" |
| get also provide external file with the grouping | |
| vector< int > | rates_vec |
| vector< string > | predictor_params_vec |
| string | measurement_name |
| vector< string > | report |
Data Fields inherited from FeatureSelector | |
| float | missing_value = (float)MED_MAT_MISSING_VALUE |
| Missing Value. | |
| unordered_set< string > | required |
| Required Features. | |
| vector< string > | selected |
| Selected Features (ordered) | |
| int | numToSelect = 0 |
| Target number to select (if 0, ignored) | |
| int | numToSelectDelta = 0 |
| Delta around numToSelect. will search to find [numToSelect - numToSelectDelta, numToSelect + numToSelectDelta]. | |
Data Fields inherited from FeatureProcessor | |
| string | feature_name = "unset_feature_name" |
| Feature name ( + name as appears in MedFeatures) ;. | |
| string | resolved_feature_name |
| FeatureProcessorTypes | processor_type = FTR_PROCESS_LAST |
| int | learn_nthreads |
| int | clean_nthreads |
Additional Inherited Members | |
Static Public Member Functions inherited from FeatureProcessor | |
| static FeatureProcessor * | make_processor (string processor_name) |
| static FeatureProcessor * | make_processor (FeatureProcessorTypes type) |
| static FeatureProcessor * | make_processor (string processor_name, string params) |
| static FeatureProcessor * | make_processor (FeatureProcessorTypes type, string params) |
IterativeFeatureSelector - Apply bottom-up or top-down iteration for feature selection.
To Use this selector specify "iterative_selector" in the fp_type
|
virtual |
Find set of selected features.
Reimplemented from FeatureSelector.
|
inlinevirtual |
Reimplemented from FeatureProcessor.
|
virtual |
The parsed fields from init command.
[ImportanceFeatureSelector::init]
[ImportanceFeatureSelector::init]
Reimplemented from FeatureProcessor.