Medial Code Documentation
Loading...
Searching...
No Matches
Tridiagonalization.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_TRIDIAGONALIZATION_H
12#define EIGEN_TRIDIAGONALIZATION_H
13
14namespace Eigen {
15
16namespace internal {
17
18template<typename MatrixType> struct TridiagonalizationMatrixTReturnType;
19template<typename MatrixType>
21 : public traits<typename MatrixType::PlainObject>
22{
23 typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix?
24 enum { Flags = 0 };
25};
26
27template<typename MatrixType, typename CoeffVectorType>
28EIGEN_DEVICE_FUNC
29void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs);
30}
31
64template<typename _MatrixType> class Tridiagonalization
65{
66 public:
67
69 typedef _MatrixType MatrixType;
70
71 typedef typename MatrixType::Scalar Scalar;
72 typedef typename NumTraits<Scalar>::Real RealScalar;
74
75 enum {
76 Size = MatrixType::RowsAtCompileTime,
77 SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1),
78 Options = MatrixType::Options,
79 MaxSize = MatrixType::MaxRowsAtCompileTime,
80 MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1)
81 };
82
86 typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView;
88
92 >::type DiagonalReturnType;
93
95 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type,
96 const Diagonal<const MatrixType, -1>
97 >::type SubDiagonalReturnType;
98
101
114 explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size)
115 : m_matrix(size,size),
116 m_hCoeffs(size > 1 ? size-1 : 1),
117 m_isInitialized(false)
118 {}
119
130 template<typename InputType>
132 : m_matrix(matrix.derived()),
133 m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1),
134 m_isInitialized(false)
135 {
136 internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
137 m_isInitialized = true;
138 }
139
157 template<typename InputType>
159 {
160 m_matrix = matrix.derived();
161 m_hCoeffs.resize(matrix.rows()-1, 1);
162 internal::tridiagonalization_inplace(m_matrix, m_hCoeffs);
163 m_isInitialized = true;
164 return *this;
165 }
166
184 {
185 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
186 return m_hCoeffs;
187 }
188
220 inline const MatrixType& packedMatrix() const
221 {
222 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
223 return m_matrix;
224 }
225
242 {
243 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
244 return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate())
245 .setLength(m_matrix.rows() - 1)
246 .setShift(1);
247 }
248
267 {
268 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
269 return MatrixTReturnType(m_matrix.real());
270 }
271
285 DiagonalReturnType diagonal() const;
286
297 SubDiagonalReturnType subDiagonal() const;
298
299 protected:
300
301 MatrixType m_matrix;
302 CoeffVectorType m_hCoeffs;
303 bool m_isInitialized;
304};
305
306template<typename MatrixType>
307typename Tridiagonalization<MatrixType>::DiagonalReturnType
309{
310 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
311 return m_matrix.diagonal().real();
312}
313
314template<typename MatrixType>
317{
318 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized.");
319 return m_matrix.template diagonal<-1>().real();
320}
321
322namespace internal {
323
347template<typename MatrixType, typename CoeffVectorType>
348EIGEN_DEVICE_FUNC
349void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
350{
351 using numext::conj;
352 typedef typename MatrixType::Scalar Scalar;
353 typedef typename MatrixType::RealScalar RealScalar;
354 Index n = matA.rows();
355 eigen_assert(n==matA.cols());
356 eigen_assert(n==hCoeffs.size()+1 || n==1);
357
358 for (Index i = 0; i<n-1; ++i)
359 {
360 Index remainingSize = n-i-1;
361 RealScalar beta;
362 Scalar h;
363 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta);
364
365 // Apply similarity transformation to remaining columns,
366 // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1)
367 matA.col(i).coeffRef(i+1) = 1;
368
369 hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>()
370 * (conj(h) * matA.col(i).tail(remainingSize)));
371
372 hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1);
373
374 matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>()
375 .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1));
376
377 matA.col(i).coeffRef(i+1) = beta;
378 hCoeffs.coeffRef(i) = h;
379 }
380}
381
382// forward declaration, implementation at the end of this file
383template<typename MatrixType,
384 int Size=MatrixType::ColsAtCompileTime,
385 bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex>
386struct tridiagonalization_inplace_selector;
387
428template<typename MatrixType, typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
429EIGEN_DEVICE_FUNC
430void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag,
431 CoeffVectorType& hcoeffs, bool extractQ)
432{
433 eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1);
434 tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, hcoeffs, extractQ);
435}
436
440template<typename MatrixType, int Size, bool IsComplex>
442{
444 template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
445 static EIGEN_DEVICE_FUNC
446 void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType& hCoeffs, bool extractQ)
447 {
448 tridiagonalization_inplace(mat, hCoeffs);
449 diag = mat.diagonal().real();
450 subdiag = mat.template diagonal<-1>().real();
451 if(extractQ)
452 mat = HouseholderSequenceType(mat, hCoeffs.conjugate())
453 .setLength(mat.rows() - 1)
454 .setShift(1);
455 }
456};
457
462template<typename MatrixType>
464{
465 typedef typename MatrixType::Scalar Scalar;
466 typedef typename MatrixType::RealScalar RealScalar;
467
468 template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
469 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, CoeffVectorType&, bool extractQ)
470 {
471 using std::sqrt;
472 const RealScalar tol = (std::numeric_limits<RealScalar>::min)();
473 diag[0] = mat(0,0);
474 RealScalar v1norm2 = numext::abs2(mat(2,0));
475 if(v1norm2 <= tol)
476 {
477 diag[1] = mat(1,1);
478 diag[2] = mat(2,2);
479 subdiag[0] = mat(1,0);
480 subdiag[1] = mat(2,1);
481 if (extractQ)
483 }
484 else
485 {
486 RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2);
487 RealScalar invBeta = RealScalar(1)/beta;
488 Scalar m01 = mat(1,0) * invBeta;
489 Scalar m02 = mat(2,0) * invBeta;
490 Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1));
491 diag[1] = mat(1,1) + m02*q;
492 diag[2] = mat(2,2) - m02*q;
493 subdiag[0] = beta;
494 subdiag[1] = mat(2,1) - m01 * q;
495 if (extractQ)
496 {
497 mat << 1, 0, 0,
498 0, m01, m02,
499 0, m02, -m01;
500 }
501 }
502 }
503};
504
508template<typename MatrixType, bool IsComplex>
509struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex>
510{
511 typedef typename MatrixType::Scalar Scalar;
512
513 template<typename DiagonalType, typename SubDiagonalType, typename CoeffVectorType>
514 static EIGEN_DEVICE_FUNC
515 void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, CoeffVectorType&, bool extractQ)
516 {
517 diag(0,0) = numext::real(mat(0,0));
518 if(extractQ)
519 mat(0,0) = Scalar(1);
520 }
521};
522
530template<typename MatrixType> struct TridiagonalizationMatrixTReturnType
531: public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> >
532{
533 public:
538 TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { }
539
540 template <typename ResultType>
541 inline void evalTo(ResultType& result) const
542 {
543 result.setZero();
544 result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
545 result.diagonal() = m_matrix.diagonal();
546 result.template diagonal<-1>() = m_matrix.template diagonal<-1>();
547 }
548
549 EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
550 EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
551
552 protected:
553 typename MatrixType::Nested m_matrix;
554};
555
556} // end namespace internal
557
558} // end namespace Eigen
559
560#endif // EIGEN_TRIDIAGONALIZATION_H
Expression of a diagonal/subdiagonal/superdiagonal in a matrix.
Definition Diagonal.h:65
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
EIGEN_DEVICE_FUNC void makeHouseholderInPlace(Scalar &tau, RealScalar &beta)
Computes the elementary reflector H such that: where the transformation H is: and the vector v is: ...
Definition Householder.h:43
NoAlias< Derived, Eigen::MatrixBase > EIGEN_DEVICE_FUNC noalias()
Definition NoAlias.h:102
EIGEN_DEVICE_FUNC Derived & setIdentity()
Writes the identity expression (not necessarily square) into *this.
Definition CwiseNullaryOp.h:873
EIGEN_DEVICE_FUNC DiagonalReturnType diagonal()
Definition Diagonal.h:187
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
Resizes *this to a rows x cols matrix.
Definition PlainObjectBase.h:271
Definition ReturnByValue.h:52
\eigenvalues_module
Definition Tridiagonalization.h:65
HouseholderSequenceType matrixQ() const
Returns the unitary matrix Q in the decomposition.
Definition Tridiagonalization.h:241
Tridiagonalization(const EigenBase< InputType > &matrix)
Constructor; computes tridiagonal decomposition of given matrix.
Definition Tridiagonalization.h:131
DiagonalReturnType diagonal() const
Returns the diagonal of the tridiagonal matrix T in the decomposition.
Definition Tridiagonalization.h:308
MatrixTReturnType matrixT() const
Returns an expression of the tridiagonal matrix T in the decomposition.
Definition Tridiagonalization.h:266
Eigen::Index Index
Definition Tridiagonalization.h:73
const MatrixType & packedMatrix() const
Returns the internal representation of the decomposition.
Definition Tridiagonalization.h:220
Tridiagonalization & compute(const EigenBase< InputType > &matrix)
Computes tridiagonal decomposition of given matrix.
Definition Tridiagonalization.h:158
Tridiagonalization(Index size=Size==Dynamic ? 2 :Size)
Default constructor.
Definition Tridiagonalization.h:114
SubDiagonalReturnType subDiagonal() const
Returns the subdiagonal of the tridiagonal matrix T in the decomposition.
Definition Tridiagonalization.h:316
CoeffVectorType householderCoefficients() const
Returns the Householder coefficients.
Definition Tridiagonalization.h:183
_MatrixType MatrixType
Synonym for the template parameter _MatrixType.
Definition Tridiagonalization.h:69
HouseholderSequence< MatrixType, typename internal::remove_all< typename CoeffVectorType::ConjugateReturnType >::type > HouseholderSequenceType
Return type of matrixQ()
Definition Tridiagonalization.h:100
Namespace containing all symbols from the Eigen library.
Definition LDLT.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time,...
Definition Constants.h:22
Definition Tridiagonalization.h:532
TridiagonalizationMatrixTReturnType(const MatrixType &mat)
Constructor.
Definition Tridiagonalization.h:538
Definition Meta.h:109
Definition ForwardDeclarations.h:17
Definition Tridiagonalization.h:442
Definition Meta.h:96