10#ifndef EIGEN_SELFADJOINT_MATRIX_VECTOR_H
11#define EIGEN_SELFADJOINT_MATRIX_VECTOR_H
23template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version=Specialized>
24struct selfadjoint_matrix_vector_product;
26template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version>
30static EIGEN_DONT_INLINE EIGEN_DEVICE_FUNC
39template<
typename Scalar,
typename Index,
int StorageOrder,
int UpLo,
bool ConjugateLhs,
bool ConjugateRhs,
int Version>
40EIGEN_DONT_INLINE EIGEN_DEVICE_FUNC
48 typedef typename packet_traits<Scalar>::type
Packet;
50 const Index PacketSize =
sizeof(
Packet)/
sizeof(Scalar);
53 IsRowMajor = StorageOrder==
RowMajor ? 1 : 0,
54 IsLower = UpLo ==
Lower ? 1 : 0,
67 Index bound = numext::maxi(
Index(0), size-8) & 0xfffffffe;
74 const Scalar* EIGEN_RESTRICT
A0 = lhs + j*
lhsStride;
75 const Scalar* EIGEN_RESTRICT
A1 = lhs + (j+1)*
lhsStride;
92 res[j] +=
cjd.pmul(numext::real(
A0[j]),
t0);
93 res[j+1] +=
cjd.pmul(numext::real(
A1[j+1]),
t1);
101 res[j+1] += cj0.pmul(A0[j+1],t0);
102 t2 += cj1.pmul(A0[j+1], rhs[j+1]);
105 for (
Index i=starti; i<alignedStart; ++i)
107 res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
108 t2 += cj1.pmul(A0[i], rhs[i]);
109 t3 += cj1.pmul(A1[i], rhs[i]);
113 const Scalar* EIGEN_RESTRICT a0It = A0 + alignedStart;
114 const Scalar* EIGEN_RESTRICT a1It = A1 + alignedStart;
115 const Scalar* EIGEN_RESTRICT rhsIt = rhs + alignedStart;
116 Scalar* EIGEN_RESTRICT resIt = res + alignedStart;
117 for (
Index i=alignedStart; i<alignedEnd; i+=PacketSize)
119 Packet A0i = ploadu<Packet>(a0It); a0It += PacketSize;
120 Packet A1i = ploadu<Packet>(a1It); a1It += PacketSize;
121 Packet Bi = ploadu<Packet>(rhsIt); rhsIt += PacketSize;
122 Packet Xi = pload <Packet>(resIt);
124 Xi = pcj0.pmadd(A0i,ptmp0, pcj0.pmadd(A1i,ptmp1,Xi));
125 ptmp2 = pcj1.pmadd(A0i, Bi, ptmp2);
126 ptmp3 = pcj1.pmadd(A1i, Bi, ptmp3);
127 pstore(resIt,Xi); resIt += PacketSize;
129 for (
Index i=alignedEnd; i<endi; i++)
131 res[i] += cj0.pmul(A0[i], t0) + cj0.pmul(A1[i],t1);
132 t2 += cj1.pmul(A0[i], rhs[i]);
133 t3 += cj1.pmul(A1[i], rhs[i]);
136 res[j] += alpha * (t2 + predux(ptmp2));
137 res[j+1] += alpha * (t3 + predux(ptmp3));
139 for (
Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
141 const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
143 Scalar t1 = cjAlpha * rhs[j];
145 res[j] += cjd.pmul(numext::real(A0[j]), t1);
146 for (
Index i=FirstTriangular ? 0 : j+1; i<(FirstTriangular ? j : size); i++)
148 res[i] += cj0.pmul(A0[i], t1);
149 t2 += cj1.pmul(A0[i], rhs[i]);
151 res[j] += alpha * t2;
163template<
typename Lhs,
int LhsMode,
typename Rhs>
170 typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned;
174 typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
178 template<
typename Dest>
179 static EIGEN_DEVICE_FUNC
182 typedef typename Dest::Scalar ResScalar;
183 typedef typename Rhs::Scalar RhsScalar;
186 eigen_assert(dest.rows()==
a_lhs.rows() && dest.cols()==
a_rhs.cols());
188 typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(
a_lhs);
189 typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(
a_rhs);
192 * RhsBlasTraits::extractScalarFactor(
a_rhs);
195 EvalToDest = (Dest::InnerStrideAtCompileTime==1),
196 UseRhs = (ActualRhsTypeCleaned::InnerStrideAtCompileTime==1)
202 ei_declare_aligned_stack_constructed_variable(ResScalar,
actualDestPtr,dest.size(),
205 ei_declare_aligned_stack_constructed_variable(RhsScalar,
actualRhsPtr,rhs.size(),
210 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
211 Index size = dest.size();
219 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
220 Index size = rhs.size();
228 int(LhsUpLo), bool(LhsBlasTraits::NeedToConjugate), bool(RhsBlasTraits::NeedToConjugate)>::run
231 &lhs.coeffRef(0,0), lhs.outerStride(),
242template<
typename Lhs,
typename Rhs,
int RhsMode>
248 template<
typename Dest>
EIGEN_DEVICE_FUNC TransposeReturnType transpose()
Definition Transpose.h:182
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
Expression of the product of two arbitrary matrices or vectors.
Definition Product.h:75
@ Lower
View matrix as a lower triangular matrix.
Definition Constants.h:209
@ Upper
View matrix as an upper triangular matrix.
Definition Constants.h:211
@ ColMajor
Storage order is column major (see TopicStorageOrders).
Definition Constants.h:319
@ RowMajor
Storage order is row major (see TopicStorageOrders).
Definition Constants.h:321
const unsigned int RowMajorBit
for a matrix, this means that the storage order is row-major.
Definition Constants.h:66
Namespace containing all symbols from the Eigen library.
Definition LDLT.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
Definition BlasUtil.h:403
Definition GeneralProduct.h:161
Definition GenericPacketMath.h:107
Definition SelfadjointMatrixVector.h:29
Definition ProductEvaluators.h:793
Definition ForwardDeclarations.h:17
Definition PacketMath.h:47