11#ifndef EIGEN_REAL_SCHUR_H
12#define EIGEN_REAL_SCHUR_H
14#include "./HessenbergDecomposition.h"
57 typedef _MatrixType MatrixType;
59 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
60 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
61 Options = MatrixType::Options,
62 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
63 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
65 typedef typename MatrixType::Scalar Scalar;
66 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
86 m_workspaceVector(size),
88 m_isInitialized(
false),
89 m_matUisUptodate(
false),
103 template<
typename InputType>
105 : m_matT(matrix.rows(),matrix.cols()),
106 m_matU(matrix.rows(),matrix.cols()),
107 m_workspaceVector(matrix.rows()),
108 m_hess(matrix.rows()),
109 m_isInitialized(
false),
110 m_matUisUptodate(
false),
113 compute(matrix.derived(), computeU);
129 eigen_assert(m_isInitialized &&
"RealSchur is not initialized.");
130 eigen_assert(m_matUisUptodate &&
"The matrix U has not been computed during the RealSchur decomposition.");
146 eigen_assert(m_isInitialized &&
"RealSchur is not initialized.");
169 template<
typename InputType>
189 template<
typename HessMatrixType,
typename OrthMatrixType>
197 eigen_assert(m_isInitialized &&
"RealSchur is not initialized.");
232 bool m_isInitialized;
233 bool m_matUisUptodate;
238 Scalar computeNormOfT();
240 void splitOffTwoRows(
Index iu,
bool computeU,
const Scalar&
exshift);
247template<
typename MatrixType>
248template<
typename InputType>
251 const Scalar
considerAsZero = (std::numeric_limits<Scalar>::min)();
253 eigen_assert(matrix.cols() == matrix.rows());
256 maxIters = m_maxIterationsPerRow * matrix.rows();
258 Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
261 m_matT.setZero(matrix.rows(),matrix.cols());
263 m_matU.setIdentity(matrix.rows(),matrix.cols());
265 m_isInitialized =
true;
266 m_matUisUptodate = computeU;
271 m_hess.compute(matrix.derived()/scale);
276 m_workspaceVector.resize(matrix.cols());
278 m_hess.matrixQ().evalTo(m_matU, m_workspaceVector);
279 computeFromHessenberg(m_hess.matrixH(), m_matU, computeU);
285template<
typename MatrixType>
286template<
typename HessMatrixType,
typename OrthMatrixType>
287RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(
const HessMatrixType& matrixH,
const OrthMatrixType& matrixQ,
bool computeU)
292 m_workspaceVector.resize(m_matT.cols());
293 if(computeU && !internal::is_same_dense(m_matU,matrixQ))
296 Index maxIters = m_maxIters;
298 maxIters = m_maxIterationsPerRow * matrixH.rows();
299 Scalar* workspace = &m_workspaceVector.coeffRef(0);
305 Index iu = m_matT.cols() - 1;
309 Scalar
norm = computeNormOfT();
312 Scalar considerAsZero = numext::maxi<Scalar>(
norm * numext::abs2(NumTraits<Scalar>::epsilon()),
313 (std::numeric_limits<Scalar>::min)() );
319 Index il = findSmallSubdiagEntry(iu,considerAsZero);
324 m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
326 m_matT.coeffRef(iu, iu-1) = Scalar(0);
332 splitOffTwoRows(iu, computeU, exshift);
339 Vector3s firstHouseholderVector = Vector3s::Zero(), shiftInfo;
340 computeShift(iu, iter, exshift, shiftInfo);
342 totalIter = totalIter + 1;
343 if (totalIter > maxIters)
break;
345 initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
346 performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
350 if(totalIter <= maxIters)
355 m_isInitialized =
true;
356 m_matUisUptodate = computeU;
361template<
typename MatrixType>
362inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
364 const Index size = m_matT.cols();
369 for (
Index j = 0; j < size; ++j)
370 norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().
sum();
375template<
typename MatrixType>
376inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu,
const Scalar& considerAsZero)
382 Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
384 s = numext::maxi<Scalar>(s * NumTraits<Scalar>::epsilon(), considerAsZero);
386 if (abs(m_matT.coeff(res,res-1)) <= s)
394template<
typename MatrixType>
395inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu,
bool computeU,
const Scalar& exshift)
399 const Index size = m_matT.cols();
403 Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
404 Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
405 m_matT.coeffRef(iu,iu) += exshift;
406 m_matT.coeffRef(iu-1,iu-1) += exshift;
410 Scalar z = sqrt(abs(q));
411 JacobiRotation<Scalar> rot;
413 rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
415 rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
417 m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
418 m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
419 m_matT.coeffRef(iu, iu-1) = Scalar(0);
421 m_matU.applyOnTheRight(iu-1, iu, rot);
425 m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
429template<
typename MatrixType>
430inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
434 shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
435 shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
436 shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
439 if (iter % 16 == 0) {
441 if (iter % 32 != 0) {
442 exshift += shiftInfo.coeff(0);
443 for (
Index i = 0; i <= iu; ++i)
444 m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
445 Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
446 shiftInfo.coeffRef(0) = Scalar(0.75) * s;
447 shiftInfo.coeffRef(1) = Scalar(0.75) * s;
448 shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
451 Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
452 s = s * s + shiftInfo.coeff(2);
456 if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
458 s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
459 s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
461 for (
Index i = 0; i <= iu; ++i)
462 m_matT.coeffRef(i,i) -= s;
463 shiftInfo.setConstant(Scalar(0.964));
470template<
typename MatrixType>
471inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu,
const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
474 Vector3s& v = firstHouseholderVector;
476 for (im = iu-2; im >= il; --im)
478 const Scalar Tmm = m_matT.coeff(im,im);
479 const Scalar r = shiftInfo.coeff(0) - Tmm;
480 const Scalar s = shiftInfo.coeff(1) - Tmm;
481 v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
482 v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
483 v.coeffRef(2) = m_matT.coeff(im+2,im+1);
487 const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
488 const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
489 if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
495template<
typename MatrixType>
496inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu,
bool computeU,
const Vector3s& firstHouseholderVector, Scalar* workspace)
498 eigen_assert(im >= il);
499 eigen_assert(im <= iu-2);
501 const Index size = m_matT.cols();
503 for (
Index k = im; k <= iu-2; ++k)
505 bool firstIteration = (k == im);
509 v = firstHouseholderVector;
511 v = m_matT.template block<3,1>(k,k-1);
515 v.makeHouseholder(ess, tau, beta);
517 if (beta != Scalar(0))
519 if (firstIteration && k > il)
520 m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
521 else if (!firstIteration)
522 m_matT.coeffRef(k,k-1) = beta;
525 m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
526 m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
528 m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
535 v.makeHouseholder(ess, tau, beta);
537 if (beta != Scalar(0))
539 m_matT.coeffRef(iu-1, iu-2) = beta;
540 m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
541 m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
543 m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
547 for (
Index i = im+2; i <= iu; ++i)
549 m_matT.coeffRef(i,i-2) = Scalar(0);
551 m_matT.coeffRef(i,i-3) = Scalar(0);
EIGEN_DEVICE_FUNC Scalar sum() const
Definition Redux.h:459
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
EIGEN_DEVICE_FUNC RealScalar norm() const
Definition Dot.h:103
\eigenvalues_module
Definition RealSchur.h:55
RealSchur & compute(const EigenBase< InputType > &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
ComputationInfo info() const
Reports whether previous computation was successful.
Definition RealSchur.h:195
const MatrixType & matrixU() const
Returns the orthogonal matrix in the Schur decomposition.
Definition RealSchur.h:127
static const int m_maxIterationsPerRow
Maximum number of iterations per row.
Definition RealSchur.h:223
RealSchur(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Definition RealSchur.h:83
Eigen::Index Index
Definition RealSchur.h:67
const MatrixType & matrixT() const
Returns the quasi-triangular matrix in the Schur decomposition.
Definition RealSchur.h:144
Index getMaxIterations()
Returns the maximum number of iterations.
Definition RealSchur.h:213
RealSchur & computeFromHessenberg(const HessMatrixType &matrixH, const OrthMatrixType &matrixQ, bool computeU)
Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T.
RealSchur & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition RealSchur.h:206
RealSchur(const EigenBase< InputType > &matrix, bool computeU=true)
Constructor; computes real Schur decomposition of given matrix.
Definition RealSchur.h:104
ComputationInfo
Enum for reporting the status of a computation.
Definition Constants.h:440
@ Success
Computation was successful.
Definition Constants.h:442
@ NoConvergence
Iterative procedure did not converge.
Definition Constants.h:446
Namespace containing all symbols from the Eigen library.
Definition LDLT.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
const int Dynamic
This value means that a positive quantity (e.g., a size) is not known at compile-time,...
Definition Constants.h:22
Definition inference.c:32