10#ifndef EIGEN_COMPLEX_AVX_H
11#define EIGEN_COMPLEX_AVX_H
25#ifndef EIGEN_VECTORIZE_AVX512
52 typedef std::complex<float> type;
59 masked_load_available=
false,
60 masked_store_available=
false
65template<> EIGEN_STRONG_INLINE Packet4cf
psub<Packet4cf>(
const Packet4cf& a,
const Packet4cf& b) {
return Packet4cf(
_mm256_sub_ps(a.v,b.v)); }
66template<> EIGEN_STRONG_INLINE Packet4cf pnegate(
const Packet4cf& a)
68 return Packet4cf(pnegate(a.v));
70template<> EIGEN_STRONG_INLINE Packet4cf pconj(
const Packet4cf& a)
72 const __m256 mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000,0x00000000,0x80000000));
73 return Packet4cf(_mm256_xor_ps(a.v,mask));
76template<> EIGEN_STRONG_INLINE Packet4cf pmul<Packet4cf>(
const Packet4cf& a,
const Packet4cf& b)
78 __m256 tmp1 = _mm256_mul_ps(_mm256_moveldup_ps(a.v), b.v);
79 __m256 tmp2 = _mm256_mul_ps(_mm256_movehdup_ps(a.v), _mm256_permute_ps(b.v, _MM_SHUFFLE(2,3,0,1)));
80 __m256 result = _mm256_addsub_ps(tmp1, tmp2);
81 return Packet4cf(result);
85EIGEN_STRONG_INLINE Packet4cf pcmp_eq(
const Packet4cf& a,
const Packet4cf& b) {
86 __m256 eq = _mm256_cmp_ps(a.v, b.v, _CMP_EQ_OQ);
87 return Packet4cf(_mm256_and_ps(eq, _mm256_permute_ps(eq, 0xb1)));
90template<> EIGEN_STRONG_INLINE Packet4cf ptrue<Packet4cf>(
const Packet4cf& a) {
return Packet4cf(ptrue(Packet8f(a.v))); }
91template<> EIGEN_STRONG_INLINE Packet4cf pand <Packet4cf>(
const Packet4cf& a,
const Packet4cf& b) {
return Packet4cf(_mm256_and_ps(a.v,b.v)); }
92template<> EIGEN_STRONG_INLINE Packet4cf por <Packet4cf>(
const Packet4cf& a,
const Packet4cf& b) {
return Packet4cf(_mm256_or_ps(a.v,b.v)); }
93template<> EIGEN_STRONG_INLINE Packet4cf pxor <Packet4cf>(
const Packet4cf& a,
const Packet4cf& b) {
return Packet4cf(_mm256_xor_ps(a.v,b.v)); }
94template<> EIGEN_STRONG_INLINE Packet4cf pandnot<Packet4cf>(
const Packet4cf& a,
const Packet4cf& b) {
return Packet4cf(_mm256_andnot_ps(b.v,a.v)); }
96template<> EIGEN_STRONG_INLINE Packet4cf pload <Packet4cf>(
const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD
return Packet4cf(pload<Packet8f>(&numext::real_ref(*from))); }
97template<> EIGEN_STRONG_INLINE Packet4cf ploadu<Packet4cf>(
const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD
return Packet4cf(ploadu<Packet8f>(&numext::real_ref(*from))); }
100template<> EIGEN_STRONG_INLINE Packet4cf pset1<Packet4cf>(
const std::complex<float>& from)
102 const float re = std::real(from);
103 const float im = std::imag(from);
104 return Packet4cf(_mm256_set_ps(im, re, im, re, im, re, im, re));
107template<> EIGEN_STRONG_INLINE Packet4cf ploaddup<Packet4cf>(
const std::complex<float>* from)
110 Packet2cf a = ploaddup<Packet2cf>(from);
111 Packet2cf b = ploaddup<Packet2cf>(from+1);
112 return Packet4cf(_mm256_insertf128_ps(_mm256_castps128_ps256(a.v), b.v, 1));
115template<> EIGEN_STRONG_INLINE
void pstore <std::complex<float> >(std::complex<float>* to,
const Packet4cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&numext::real_ref(*to), from.v); }
116template<> EIGEN_STRONG_INLINE
void pstoreu<std::complex<float> >(std::complex<float>* to,
const Packet4cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&numext::real_ref(*to), from.v); }
118template<> EIGEN_DEVICE_FUNC
inline Packet4cf pgather<std::complex<float>, Packet4cf>(
const std::complex<float>* from,
Index stride)
120 return Packet4cf(_mm256_set_ps(std::imag(from[3*stride]), std::real(from[3*stride]),
121 std::imag(from[2*stride]), std::real(from[2*stride]),
122 std::imag(from[1*stride]), std::real(from[1*stride]),
123 std::imag(from[0*stride]), std::real(from[0*stride])));
126template<> EIGEN_DEVICE_FUNC
inline void pscatter<std::complex<float>, Packet4cf>(std::complex<float>* to,
const Packet4cf& from,
Index stride)
128 __m128 low = _mm256_extractf128_ps(from.v, 0);
129 to[stride*0] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 0)),
130 _mm_cvtss_f32(_mm_shuffle_ps(low, low, 1)));
131 to[stride*1] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(low, low, 2)),
132 _mm_cvtss_f32(_mm_shuffle_ps(low, low, 3)));
134 __m128 high = _mm256_extractf128_ps(from.v, 1);
135 to[stride*2] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 0)),
136 _mm_cvtss_f32(_mm_shuffle_ps(high, high, 1)));
137 to[stride*3] = std::complex<float>(_mm_cvtss_f32(_mm_shuffle_ps(high, high, 2)),
138 _mm_cvtss_f32(_mm_shuffle_ps(high, high, 3)));
142template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet4cf>(
const Packet4cf& a)
144 return pfirst(Packet2cf(_mm256_castps256_ps128(a.v)));
147template<> EIGEN_STRONG_INLINE Packet4cf preverse(
const Packet4cf& a) {
148 __m128 low = _mm256_extractf128_ps(a.v, 0);
149 __m128 high = _mm256_extractf128_ps(a.v, 1);
150 __m128d lowd = _mm_castps_pd(low);
151 __m128d highd = _mm_castps_pd(high);
152 low = _mm_castpd_ps(_mm_shuffle_pd(lowd,lowd,0x1));
153 high = _mm_castpd_ps(_mm_shuffle_pd(highd,highd,0x1));
154 __m256 result = _mm256_setzero_ps();
155 result = _mm256_insertf128_ps(result, low, 1);
156 result = _mm256_insertf128_ps(result, high, 0);
157 return Packet4cf(result);
160template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet4cf>(
const Packet4cf& a)
162 return predux(padd(Packet2cf(_mm256_extractf128_ps(a.v,0)),
163 Packet2cf(_mm256_extractf128_ps(a.v,1))));
166template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet4cf>(
const Packet4cf& a)
168 return predux_mul(pmul(Packet2cf(_mm256_extractf128_ps(a.v, 0)),
169 Packet2cf(_mm256_extractf128_ps(a.v, 1))));
173EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet4cf,Packet8f)
175template<> EIGEN_STRONG_INLINE Packet4cf pdiv<Packet4cf>(
const Packet4cf& a,
const Packet4cf& b)
177 return pdiv_complex(a, b);
180template<> EIGEN_STRONG_INLINE Packet4cf pcplxflip<Packet4cf>(
const Packet4cf& x)
182 return Packet4cf(_mm256_shuffle_ps(x.v, x.v, _MM_SHUFFLE(2, 3, 0 ,1)));
193#ifndef EIGEN_VECTORIZE_AVX512
220 typedef std::complex<double> type;
227 masked_load_available=
false,
228 masked_store_available=
false
233template<> EIGEN_STRONG_INLINE Packet2cd
psub<Packet2cd>(
const Packet2cd& a,
const Packet2cd& b) {
return Packet2cd(
_mm256_sub_pd(a.v,b.v)); }
234template<> EIGEN_STRONG_INLINE Packet2cd pnegate(
const Packet2cd& a) {
return Packet2cd(pnegate(a.v)); }
235template<> EIGEN_STRONG_INLINE Packet2cd pconj(
const Packet2cd& a)
237 const __m256d mask = _mm256_castsi256_pd(_mm256_set_epi32(0x80000000,0x0,0x0,0x0,0x80000000,0x0,0x0,0x0));
238 return Packet2cd(_mm256_xor_pd(a.v,mask));
241template<> EIGEN_STRONG_INLINE Packet2cd pmul<Packet2cd>(
const Packet2cd& a,
const Packet2cd& b)
243 __m256d tmp1 = _mm256_shuffle_pd(a.v,a.v,0x0);
244 __m256d even = _mm256_mul_pd(tmp1, b.v);
245 __m256d tmp2 = _mm256_shuffle_pd(a.v,a.v,0xF);
246 __m256d tmp3 = _mm256_shuffle_pd(b.v,b.v,0x5);
247 __m256d odd = _mm256_mul_pd(tmp2, tmp3);
248 return Packet2cd(_mm256_addsub_pd(even, odd));
252EIGEN_STRONG_INLINE Packet2cd pcmp_eq(
const Packet2cd& a,
const Packet2cd& b) {
253 __m256d eq = _mm256_cmp_pd(a.v, b.v, _CMP_EQ_OQ);
254 return Packet2cd(pand(eq, _mm256_permute_pd(eq, 0x5)));
257template<> EIGEN_STRONG_INLINE Packet2cd ptrue<Packet2cd>(
const Packet2cd& a) {
return Packet2cd(ptrue(Packet4d(a.v))); }
258template<> EIGEN_STRONG_INLINE Packet2cd pand <Packet2cd>(
const Packet2cd& a,
const Packet2cd& b) {
return Packet2cd(_mm256_and_pd(a.v,b.v)); }
259template<> EIGEN_STRONG_INLINE Packet2cd por <Packet2cd>(
const Packet2cd& a,
const Packet2cd& b) {
return Packet2cd(_mm256_or_pd(a.v,b.v)); }
260template<> EIGEN_STRONG_INLINE Packet2cd pxor <Packet2cd>(
const Packet2cd& a,
const Packet2cd& b) {
return Packet2cd(_mm256_xor_pd(a.v,b.v)); }
261template<> EIGEN_STRONG_INLINE Packet2cd pandnot<Packet2cd>(
const Packet2cd& a,
const Packet2cd& b) {
return Packet2cd(_mm256_andnot_pd(b.v,a.v)); }
263template<> EIGEN_STRONG_INLINE Packet2cd pload <Packet2cd>(
const std::complex<double>* from)
264{ EIGEN_DEBUG_ALIGNED_LOAD
return Packet2cd(pload<Packet4d>((
const double*)from)); }
265template<> EIGEN_STRONG_INLINE Packet2cd ploadu<Packet2cd>(
const std::complex<double>* from)
266{ EIGEN_DEBUG_UNALIGNED_LOAD
return Packet2cd(ploadu<Packet4d>((
const double*)from)); }
268template<> EIGEN_STRONG_INLINE Packet2cd pset1<Packet2cd>(
const std::complex<double>& from)
272 return Packet2cd(_mm256_broadcast_pd((
const __m128d*)(
const void*)&from));
275template<> EIGEN_STRONG_INLINE Packet2cd ploaddup<Packet2cd>(
const std::complex<double>* from) {
return pset1<Packet2cd>(*from); }
277template<> EIGEN_STRONG_INLINE
void pstore <std::complex<double> >(std::complex<double> * to,
const Packet2cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((
double*)to, from.v); }
278template<> EIGEN_STRONG_INLINE
void pstoreu<std::complex<double> >(std::complex<double> * to,
const Packet2cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((
double*)to, from.v); }
280template<> EIGEN_DEVICE_FUNC
inline Packet2cd pgather<std::complex<double>, Packet2cd>(
const std::complex<double>* from,
Index stride)
282 return Packet2cd(_mm256_set_pd(std::imag(from[1*stride]), std::real(from[1*stride]),
283 std::imag(from[0*stride]), std::real(from[0*stride])));
286template<> EIGEN_DEVICE_FUNC
inline void pscatter<std::complex<double>, Packet2cd>(std::complex<double>* to,
const Packet2cd& from,
Index stride)
288 __m128d low = _mm256_extractf128_pd(from.v, 0);
289 to[stride*0] = std::complex<double>(_mm_cvtsd_f64(low), _mm_cvtsd_f64(_mm_shuffle_pd(low, low, 1)));
290 __m128d high = _mm256_extractf128_pd(from.v, 1);
291 to[stride*1] = std::complex<double>(_mm_cvtsd_f64(high), _mm_cvtsd_f64(_mm_shuffle_pd(high, high, 1)));
294template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet2cd>(
const Packet2cd& a)
296 __m128d low = _mm256_extractf128_pd(a.v, 0);
297 EIGEN_ALIGN16
double res[2];
298 _mm_store_pd(res, low);
299 return std::complex<double>(res[0],res[1]);
302template<> EIGEN_STRONG_INLINE Packet2cd preverse(
const Packet2cd& a) {
303 __m256d result = _mm256_permute2f128_pd(a.v, a.v, 1);
304 return Packet2cd(result);
307template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet2cd>(
const Packet2cd& a)
309 return predux(padd(Packet1cd(_mm256_extractf128_pd(a.v,0)),
310 Packet1cd(_mm256_extractf128_pd(a.v,1))));
313template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet2cd>(
const Packet2cd& a)
315 return predux(pmul(Packet1cd(_mm256_extractf128_pd(a.v,0)),
316 Packet1cd(_mm256_extractf128_pd(a.v,1))));
319EIGEN_MAKE_CONJ_HELPER_CPLX_REAL(Packet2cd,Packet4d)
321template<> EIGEN_STRONG_INLINE Packet2cd pdiv<Packet2cd>(
const Packet2cd& a,
const Packet2cd& b)
323 return pdiv_complex(a, b);
326template<> EIGEN_STRONG_INLINE Packet2cd pcplxflip<Packet2cd>(
const Packet2cd& x)
328 return Packet2cd(_mm256_shuffle_pd(x.v, x.v, 0x5));
331EIGEN_DEVICE_FUNC
inline void
332ptranspose(PacketBlock<Packet4cf,4>& kernel) {
333 __m256d P0 = _mm256_castps_pd(kernel.packet[0].v);
334 __m256d P1 = _mm256_castps_pd(kernel.packet[1].v);
335 __m256d P2 = _mm256_castps_pd(kernel.packet[2].v);
336 __m256d P3 = _mm256_castps_pd(kernel.packet[3].v);
338 __m256d T0 = _mm256_shuffle_pd(P0, P1, 15);
339 __m256d T1 = _mm256_shuffle_pd(P0, P1, 0);
340 __m256d T2 = _mm256_shuffle_pd(P2, P3, 15);
341 __m256d T3 = _mm256_shuffle_pd(P2, P3, 0);
343 kernel.packet[1].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 32));
344 kernel.packet[3].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T0, T2, 49));
345 kernel.packet[0].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 32));
346 kernel.packet[2].v = _mm256_castpd_ps(_mm256_permute2f128_pd(T1, T3, 49));
349EIGEN_DEVICE_FUNC
inline void
350ptranspose(PacketBlock<Packet2cd,2>& kernel) {
351 __m256d tmp = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 0+(2<<4));
352 kernel.packet[1].v = _mm256_permute2f128_pd(kernel.packet[0].v, kernel.packet[1].v, 1+(3<<4));
353 kernel.packet[0].v = tmp;
356template<> EIGEN_STRONG_INLINE Packet2cd psqrt<Packet2cd>(
const Packet2cd& a) {
357 return psqrt_complex<Packet2cd>(a);
360template<> EIGEN_STRONG_INLINE Packet4cf psqrt<Packet4cf>(
const Packet4cf& a) {
361 return psqrt_complex<Packet4cf>(a);
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:50
@ Aligned32
Data pointer is aligned on a 32 bytes boundary.
Definition Constants.h:236
Namespace containing all symbols from the Eigen library.
Definition LDLT.h:16
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:74
Definition GenericPacketMath.h:43
Definition GenericPacketMath.h:107
Definition GenericPacketMath.h:133