Medial Code Documentation
Loading...
Searching...
No Matches
Functions | Variables
xgboost.testing.updater Namespace Reference

Functions

float get_basescore (xgb.XGBModel model)
 
None check_init_estimation (str tree_method)
 
None check_quantile_loss (str tree_method, bool weighted)
 
None check_cut (int n_entries, np.ndarray indptr, np.ndarray data, Any dtypes)
 
None check_get_quantile_cut_device (str tree_method, bool use_cupy)
 
None check_get_quantile_cut (str tree_method)
 
None check_categorical_ohe (int rows, int cols, int rounds, int cats, str device, str tree_method)
 
None check_categorical_missing (int rows, int cols, int cats, str device, str tree_method)
 
Dict[str, Any] train_result (Dict[str, Any] param, xgb.DMatrix dmat, int num_rounds)
 

Variables

 USE_ONEHOT = np.iinfo(np.int32).max
 
int USE_PART = 1
 

Detailed Description

Tests for updaters.

Function Documentation

◆ check_categorical_missing()

None xgboost.testing.updater.check_categorical_missing ( int  rows,
int  cols,
int  cats,
str  device,
str   tree_method 
)
Check categorical data with missing values.

◆ check_cut()

None xgboost.testing.updater.check_cut ( int  n_entries,
np.ndarray  indptr,
np.ndarray  data,
Any   dtypes 
)
Check the cut values.

◆ check_get_quantile_cut()

None xgboost.testing.updater.check_get_quantile_cut ( str  tree_method)
Check the quantile cut getter.

◆ check_get_quantile_cut_device()

None xgboost.testing.updater.check_get_quantile_cut_device ( str  tree_method,
bool  use_cupy 
)
Check with optional cupy.

◆ check_init_estimation()

None xgboost.testing.updater.check_init_estimation ( str  tree_method)
Test for init estimation.

◆ check_quantile_loss()

None xgboost.testing.updater.check_quantile_loss ( str  tree_method,
bool  weighted 
)
Test for quantile loss.

◆ get_basescore()

float xgboost.testing.updater.get_basescore ( xgb.XGBModel  model)
Get base score from an XGBoost sklearn estimator.

◆ train_result()

Dict[str, Any] xgboost.testing.updater.train_result ( Dict[str, Any]  param,
xgb.DMatrix  dmat,
int   num_rounds 
)
Get training result from parameters and data.