Medial Code Documentation
Loading...
Searching...
No Matches
Namespaces | Data Structures | Typedefs | Enumerations | Functions | Variables
xgboost.data Namespace Reference

Copyright 2019-2023, XGBoost Contributors. More...

Namespaces

namespace  detail
 Copyright 2023, XGBoost Contributors.
 

Data Structures

class  ArrayAdapter
 Adapter for dense array on host, in Python that's numpy.ndarray. More...
 
class  ArrayAdapterBatch
 
class  ArrowColumnarBatch
 
struct  ArrowSchemaImporter
 
struct  Cache
 Information about the cache including path and page offsets. More...
 
class  Column
 
struct  ColumnarMetaInfo
 
struct  COOTuple
 
class  CSCAdapter
 
class  CSCAdapterBatch
 
class  CSCArrayAdapter
 CSC adapter with support for array interface. More...
 
class  CSCArrayAdapterBatch
 
class  CSCPageSource
 
class  CSRAdapter
 
class  CSRAdapterBatch
 
class  CSRArrayAdapter
 Adapter for CSR array on host, in Python that's scipy.sparse.csr_matrix. More...
 
class  CSRArrayAdapterBatch
 
class  DataIterProxy
 
class  DataTableAdapter
 
class  DataTableAdapterBatch
 
class  DenseAdapter
 
class  DenseAdapterBatch
 
class  DMatrixProxy
 
class  EllpackPageSource
 
class  ExceHandler
 
class  FileAdapter
 FileAdapter wraps dmlc::parser to read files and provide access in a common interface. More...
 
class  FileAdapterBatch
 
class  FileIterator
 An iterator for implementing external memory support with file inputs. More...
 
class  GHistIndexRawFormat
 
class  GradientIndexPageSource
 
struct  IsValidFunctor
 
class  IterativeDMatrix
 DMatrix type for QuantileDMatrix, the naming IterativeDMatix is due to its construction process. More...
 
class  IteratorAdapter
 Data iterator that takes callback to return data, used in JVM package for accepting data iterator. More...
 
struct  LabelsCheck
 
class  PageSourceIncMixIn
 
class  PrimitiveColumn
 
class  RecordBatchesIterAdapter
 
class  SimpleBatchIteratorImpl
 
class  SimpleDMatrix
 
class  SingleBatchInternalIter
 
class  SortedCSCPageSource
 
class  SparsePageAdapterBatch
 
class  SparsePageDMatrix
 DMatrix used for external memory. More...
 
class  SparsePageFormat
 Format specification of various data formats like SparsePage. More...
 
struct  SparsePageFormatReg
 Registry entry for sparse page format. More...
 
class  SparsePageRawFormat
 
class  SparsePageSource
 
class  SparsePageSourceImpl
 Base class for all page sources. More...
 
class  TryLockGuard
 
struct  WeightsCheck
 

Typedefs

using ArrowColumnarBatchVec = std::vector< std::unique_ptr< ArrowColumnarBatch > >
 

Enumerations

enum  ColumnDType : uint8_t {
  kUnknown , kInt8 , kUInt8 , kInt16 ,
  kUInt16 , kInt32 , kUInt32 , kInt64 ,
  kUInt64 , kFloat , kDouble
}
 

Functions

None _warn_unused_missing (DataType data, Optional[FloatCompatible] missing)
 
None _check_data_shape (DataType data)
 
bool _is_scipy_csr (DataType data)
 
bytes _array_interface (np.ndarray data)
 
DataType transform_scipy_sparse (DataType data, bool is_csr)
 
DispatchedDataBackendReturnType _from_scipy_csr (DataType data, FloatCompatible missing, int nthread, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types)
 
bool _is_scipy_csc (DataType data)
 
DispatchedDataBackendReturnType _from_scipy_csc (DataType data, FloatCompatible missing, int nthread, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types)
 
bool _is_scipy_coo (DataType data)
 
bool _is_np_array_like (DataType data)
 
Tuple[np.ndarray, Optional[NumpyDType]] _ensure_np_dtype (DataType data, Optional[NumpyDType] dtype)
 
np.ndarray _maybe_np_slice (DataType data, Optional[NumpyDType] dtype)
 
DispatchedDataBackendReturnType _from_numpy_array (DataType data, FloatCompatible missing, int nthread, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types, DataSplitMode data_split_mode=DataSplitMode.ROW)
 
bool _is_pandas_df (DataType data)
 
bool _is_modin_df (DataType data)
 
None _invalid_dataframe_dtype (DataType data)
 
Tuple[Optional[FeatureNames], Optional[FeatureTypes]] pandas_feature_info (DataFrame data, Optional[str] meta, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types, bool enable_categorical)
 
bool is_nullable_dtype (PandasDType dtype)
 
bool is_pa_ext_dtype (Any dtype)
 
bool is_pa_ext_categorical_dtype (Any dtype)
 
bool is_pd_cat_dtype (PandasDType dtype)
 
bool is_pd_sparse_dtype (PandasDType dtype)
 
DataFrame pandas_cat_null (DataFrame data)
 
DataFrame pandas_ext_num_types (DataFrame data)
 
Tuple[np.ndarray, Optional[FeatureNames], Optional[FeatureTypes]] _transform_pandas_df (DataFrame data, bool enable_categorical, Optional[FeatureNames] feature_names=None, Optional[FeatureTypes] feature_types=None, Optional[str] meta=None, Optional[NumpyDType] meta_type=None)
 
DispatchedDataBackendReturnType _from_pandas_df (DataFrame data, bool enable_categorical, FloatCompatible missing, int nthread, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types)
 
bool _is_pandas_series (DataType data)
 
None _meta_from_pandas_series (DataType data, str name, Optional[NumpyDType] dtype, ctypes.c_void_p handle)
 
bool _is_modin_series (DataType data)
 
DispatchedDataBackendReturnType _from_pandas_series (DataType data, FloatCompatible missing, int nthread, bool enable_categorical, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types)
 
bool _is_dt_df (DataType data)
 
Tuple[np.ndarray, Optional[FeatureNames], Optional[FeatureTypes]] _transform_dt_df (DataType data, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types, Optional[str] meta=None, Optional[NumpyDType] meta_type=None)
 
DispatchedDataBackendReturnType _from_dt_df (DataType data, Optional[FloatCompatible] missing, int nthread, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types, bool enable_categorical)
 
bool _is_arrow (DataType data)
 
Callable record_batch_data_iter (Iterator data_iter)
 
DispatchedDataBackendReturnType _from_arrow (DataType data, FloatCompatible missing, int nthread, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types, bool enable_categorical)
 
bool _is_cudf_df (DataType data)
 
bytes _cudf_array_interfaces (DataType data, list cat_codes)
 
Tuple[ctypes.c_void_p, list, Optional[FeatureNames], Optional[FeatureTypes]] _transform_cudf_df (DataType data, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types, bool enable_categorical)
 
DispatchedDataBackendReturnType _from_cudf_df (DataType data, FloatCompatible missing, int nthread, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types, bool enable_categorical)
 
bool _is_cudf_ser (DataType data)
 
bool _is_cupy_array (DataType data)
 
CupyT _transform_cupy_array (DataType data)
 
DispatchedDataBackendReturnType _from_cupy_array (DataType data, FloatCompatible missing, int nthread, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types)
 
bool _is_cupy_csr (DataType data)
 
bool _is_cupy_csc (DataType data)
 
bool _is_dlpack (DataType data)
 
bool _transform_dlpack (DataType data)
 
DispatchedDataBackendReturnType _from_dlpack (DataType data, FloatCompatible missing, int nthread, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types)
 
bool _is_uri (DataType data)
 
DispatchedDataBackendReturnType _from_uri (DataType data, Optional[FloatCompatible] missing, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types, DataSplitMode data_split_mode=DataSplitMode.ROW)
 
bool _is_list (DataType data)
 
DispatchedDataBackendReturnType _from_list (Sequence data, FloatCompatible missing, int n_threads, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types)
 
bool _is_tuple (DataType data)
 
DispatchedDataBackendReturnType _from_tuple (Sequence data, FloatCompatible missing, int n_threads, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types)
 
bool _is_iter (DataType data)
 
bool _has_array_protocol (DataType data)
 
DataType _convert_unknown_data (DataType data)
 
DispatchedDataBackendReturnType dispatch_data_backend (DataType data, FloatCompatible missing, int threads, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types, bool enable_categorical=False, DataSplitMode data_split_mode=DataSplitMode.ROW)
 
None _validate_meta_shape (DataType data, str name)
 
None _meta_from_numpy (np.ndarray data, str field, Optional[NumpyDType] dtype, ctypes.c_void_p handle)
 
None _meta_from_list (Sequence data, str field, Optional[NumpyDType] dtype, ctypes.c_void_p handle)
 
None _meta_from_tuple (Sequence data, str field, Optional[NumpyDType] dtype, ctypes.c_void_p handle)
 
None _meta_from_cudf_df (DataType data, str field, ctypes.c_void_p handle)
 
None _meta_from_cudf_series (DataType data, str field, ctypes.c_void_p handle)
 
None _meta_from_cupy_array (DataType data, str field, ctypes.c_void_p handle)
 
None _meta_from_dt (DataType data, str field, Optional[NumpyDType] dtype, ctypes.c_void_p handle)
 
None dispatch_meta_backend (DMatrix matrix, DataType data, str name, Optional[NumpyDType] dtype=None)
 
TransformedData _proxy_transform (DataType data, Optional[FeatureNames] feature_names, Optional[FeatureTypes] feature_types, bool enable_categorical)
 
None dispatch_proxy_set_data (_ProxyDMatrix proxy, DataType data, Optional[list] cat_codes, bool allow_host)
 
 DMLC_REGISTRY_LINK_TAG (sparse_page_raw_format)
 
 DMLC_REGISTRY_LINK_TAG (gradient_index_format)
 
std::string ValidateFileFormat (std::string const &uri)
 
 DMLC_REGISTRY_FILE_TAG (gradient_index_format)
 
 describe ("Raw GHistIndex binary data format.") .set_body([]()
 
bool ReadHistogramCuts (common::HistogramCuts *cuts, common::AlignedResourceReadStream *fi)
 
std::size_t WriteHistogramCuts (common::HistogramCuts const &cuts, common::AlignedFileWriteStream *fo)
 
void GetCutsFromRef (Context const *ctx, std::shared_ptr< DMatrix > ref, bst_feature_t n_features, BatchParam p, common::HistogramCuts *p_cuts)
 Get quantile cuts from reference (Quantile)DMatrix.
 
void GetCutsFromEllpack (EllpackPage const &page, common::HistogramCuts *cuts)
 Get quantile cuts from ellpack page.
 
std::shared_ptr< DMatrixCreateDMatrixFromProxy (Context const *ctx, std::shared_ptr< DMatrixProxy > proxy, float missing)
 Create a SimpleDMatrix instance from a DMatrixProxy.
 
DMatrixProxyMakeProxy (DMatrixHandle proxy)
 
template<bool get_value = true, typename Fn >
decltype(auto) HostAdapterDispatch (DMatrixProxy const *proxy, Fn fn, bool *type_error=nullptr)
 Dispatch function call based on input type.
 
std::string MakeId (std::string prefix, SparsePageDMatrix *ptr)
 
std::string MakeCache (SparsePageDMatrix *ptr, std::string format, std::string prefix, std::map< std::string, std::shared_ptr< Cache > > *out)
 
 DMLC_REGISTRY_FILE_TAG (sparse_page_raw_format)
 
 describe ("Raw binary data format.") .set_body([]()
 
void TryDeleteCacheFile (const std::string &file)
 
void DevicePush (DMatrixProxy *, float, SparsePage *)
 
template<typename T >
SparsePageFormat< T > * CreatePageFormat (const std::string &name)
 Create sparse page of format.
 
void ValidateQueryGroup (std::vector< bst_group_t > const &group_ptr_)
 
 TEST (FileIterator, Basic)
 
 TEST (GradientIndex, ExternalMemoryBaseRowID)
 
 TEST (GradientIndex, FromCategoricalBasic)
 
 TEST (GradientIndex, FromCategoricalLarge)
 
 TEST (GradientIndex, PushBatch)
 
 TEST (GHistIndexPageRawFormat, IO)
 
 TEST (IterativeDMatrix, Ref)
 
 TEST (IterativeDMatrix, IsDense)
 
template<typename Page , typename Iter , typename Cuts >
void TestRefDMatrix (Context const *ctx, Cuts &&get_cuts)
 
 TEST (ProxyDMatrix, HostData)
 
template<typename S >
void TestSparsePageRawFormat ()
 
 TEST (SparsePageRawFormat, SparsePage)
 
 TEST (SparsePageRawFormat, CSCPage)
 
 TEST (SparsePageRawFormat, SortedCSCPage)
 

Variables

 DispatchedDataBackendReturnType
 
str CAT_T = "c"
 
dict _matrix_meta = {"base_margin", "label"}
 
dict _pandas_dtype_mapper
 
dict pandas_nullable_mapper
 
dict pandas_pyarrow_mapper
 
tuple _ENABLE_CAT_ERR
 
constexpr size_t kAdapterUnknownSize = std::numeric_limits<size_t >::max()
 External data formats should implement an adapter as below.
 

Detailed Description

Copyright 2019-2023, XGBoost Contributors.

Copyright 2022-2023 by XGBoost contributors.

Copyright 2021-2023 by XGBoost contributors.

Copyright 2020-2023, XGBoost contributors.

Copyright 2022-2023, XGBoost contributors.

Copyright 2021-2023, XGBoost Contributors.

Copyright 2021-2023 XGBoost contributors.

Copyright 2021-2023, XGBoost contributors.

Data dispatching for DMatrix.

Function Documentation

◆ _cudf_array_interfaces()

bytes xgboost.data._cudf_array_interfaces ( DataType  data,
list  cat_codes 
)
protected
Extract CuDF __cuda_array_interface__.  This is special as it returns a new list
of data and a list of array interfaces.  The data is list of categorical codes that
caller can safely ignore, but have to keep their reference alive until usage of
array interface is finished.

◆ _from_cupy_array()

DispatchedDataBackendReturnType xgboost.data._from_cupy_array ( DataType  data,
FloatCompatible  missing,
int  nthread,
Optional[FeatureNames]  feature_names,
Optional[FeatureTypes]  feature_types 
)
protected
Initialize DMatrix from cupy ndarray.

◆ _from_numpy_array()

DispatchedDataBackendReturnType xgboost.data._from_numpy_array ( DataType  data,
FloatCompatible  missing,
int  nthread,
Optional[FeatureNames]  feature_names,
Optional[FeatureTypes]  feature_types,
DataSplitMode   data_split_mode = DataSplitMode.ROW 
)
protected
Initialize data from a 2-D numpy matrix.

◆ _from_scipy_csc()

DispatchedDataBackendReturnType xgboost.data._from_scipy_csc ( DataType  data,
FloatCompatible  missing,
int  nthread,
Optional[FeatureNames]  feature_names,
Optional[FeatureTypes]  feature_types 
)
protected
Initialize data from a CSC matrix.

◆ _from_scipy_csr()

DispatchedDataBackendReturnType xgboost.data._from_scipy_csr ( DataType  data,
FloatCompatible  missing,
int  nthread,
Optional[FeatureNames]  feature_names,
Optional[FeatureTypes]  feature_types 
)
protected
Initialize data from a CSR matrix.

◆ _maybe_np_slice()

np.ndarray xgboost.data._maybe_np_slice ( DataType  data,
Optional[NumpyDType]  dtype 
)
protected
Handle numpy slice.  This can be removed if we use __array_interface__.

◆ _meta_from_pandas_series()

None xgboost.data._meta_from_pandas_series ( DataType  data,
str  name,
Optional[NumpyDType]  dtype,
ctypes.c_void_p   handle 
)
protected
Help transform pandas series for meta data like labels

◆ _transform_dt_df()

Tuple[np.ndarray, Optional[FeatureNames], Optional[FeatureTypes]] xgboost.data._transform_dt_df ( DataType  data,
Optional[FeatureNames]  feature_names,
Optional[FeatureTypes]  feature_types,
Optional[str]   meta = None,
Optional[NumpyDType]   meta_type = None 
)
protected
Validate feature names and types if data table

◆ CreatePageFormat()

template<typename T >
SparsePageFormat< T > * xgboost::data::CreatePageFormat ( const std::string &  name)
inline

Create sparse page of format.

Returns
The created format functors.

◆ dispatch_data_backend()

DispatchedDataBackendReturnType xgboost.data.dispatch_data_backend ( DataType  data,
FloatCompatible  missing,
int  threads,
Optional[FeatureNames]  feature_names,
Optional[FeatureTypes]  feature_types,
bool   enable_categorical = False,
DataSplitMode   data_split_mode = DataSplitMode.ROW 
)
Dispatch data for DMatrix.

◆ dispatch_meta_backend()

None xgboost.data.dispatch_meta_backend ( DMatrix  matrix,
DataType  data,
str  name,
Optional[NumpyDType]   dtype = None 
)
Dispatch for meta info.

◆ dispatch_proxy_set_data()

None xgboost.data.dispatch_proxy_set_data ( _ProxyDMatrix  proxy,
DataType  data,
Optional[list]  cat_codes,
bool  allow_host 
)
Dispatch for QuantileDMatrix.

◆ GetCutsFromRef()

void xgboost::data::GetCutsFromRef ( Context const *  ctx,
std::shared_ptr< DMatrix ref,
bst_feature_t  n_features,
BatchParam  p,
common::HistogramCuts p_cuts 
)

Get quantile cuts from reference (Quantile)DMatrix.

Parameters
ctxThe context of the new DMatrix.
refThe reference DMatrix.
n_featuresNumber of features, used for validation only.
pBatch parameter for the new DMatrix.
p_cutsOutput quantile cuts.

◆ HostAdapterDispatch()

template<bool get_value = true, typename Fn >
decltype(auto) xgboost::data::HostAdapterDispatch ( DMatrixProxy const *  proxy,
Fn  fn,
bool *  type_error = nullptr 
)

Dispatch function call based on input type.

Template Parameters
get_valueWhether the funciton Fn accept an adapter batch or the adapter itself.
FnThe type of the function to be dispatched.
Parameters
proxyThe proxy object holding the reference to the input.
fnThe function to be dispatched.
type_error[out]Set to ture if it's not null and the input data is not recognized by the host.
Returns
The return value of the function being dispatched.

◆ is_nullable_dtype()

bool xgboost.data.is_nullable_dtype ( PandasDType  dtype)
Whether dtype is a pandas nullable type.

◆ is_pa_ext_categorical_dtype()

bool xgboost.data.is_pa_ext_categorical_dtype ( Any  dtype)
Check whether dtype is a dictionary type.

◆ is_pa_ext_dtype()

bool xgboost.data.is_pa_ext_dtype ( Any  dtype)
Return whether dtype is a pyarrow extension type for pandas

◆ is_pd_cat_dtype()

bool xgboost.data.is_pd_cat_dtype ( PandasDType  dtype)
Wrapper for testing pandas category type.

◆ is_pd_sparse_dtype()

bool xgboost.data.is_pd_sparse_dtype ( PandasDType  dtype)
Wrapper for testing pandas sparse type.

◆ pandas_cat_null()

DataFrame xgboost.data.pandas_cat_null ( DataFrame  data)
Handle categorical dtype and nullable extension types from pandas.

◆ pandas_ext_num_types()

DataFrame xgboost.data.pandas_ext_num_types ( DataFrame  data)
Experimental suppport for handling pyarrow extension numeric types.

◆ pandas_feature_info()

Tuple[Optional[FeatureNames], Optional[FeatureTypes]] xgboost.data.pandas_feature_info ( DataFrame  data,
Optional[str]  meta,
Optional[FeatureNames]  feature_names,
Optional[FeatureTypes]  feature_types,
bool  enable_categorical 
)
Handle feature info for pandas dataframe.

◆ record_batch_data_iter()

Callable xgboost.data.record_batch_data_iter ( Iterator  data_iter)
Data iterator used to ingest Arrow columnar record batches. We are not using
class DataIter because it is only intended for building Device DMatrix and external
memory DMatrix.

◆ transform_scipy_sparse()

DataType xgboost.data.transform_scipy_sparse ( DataType  data,
bool  is_csr 
)
Ensure correct data alignment and data type for scipy sparse inputs. Input should
be either csr or csc matrix.

Variable Documentation

◆ _ENABLE_CAT_ERR

tuple xgboost.data._ENABLE_CAT_ERR
protected
Initial value:
1= (
2 "When categorical type is supplied, The experimental DMatrix parameter"
3 "`enable_categorical` must be set to `True`."
4)

◆ _pandas_dtype_mapper

dict xgboost.data._pandas_dtype_mapper
protected
Initial value:
1= {
2 "int8": "int",
3 "int16": "int",
4 "int32": "int",
5 "int64": "int",
6 "uint8": "int",
7 "uint16": "int",
8 "uint32": "int",
9 "uint64": "int",
10 "float16": "float",
11 "float32": "float",
12 "float64": "float",
13 "bool": "i",
14}

◆ DispatchedDataBackendReturnType

xgboost.data.DispatchedDataBackendReturnType
Initial value:
1= Tuple[
2 ctypes.c_void_p, Optional[FeatureNames], Optional[FeatureTypes]
3]

◆ kAdapterUnknownSize

constexpr size_t xgboost::data.kAdapterUnknownSize = std::numeric_limits<size_t >::max()
constexpr

External data formats should implement an adapter as below.

The adapter provides a uniform access to data outside xgboost, allowing construction of DMatrix objects from a range of sources without duplicating code.

The adapter object is an iterator that returns batches of data. Each batch contains a number of "lines". A line represents a set of elements from a sparse input matrix, normally a row in the case of a CSR matrix or a column for a CSC matrix. Typically in sparse matrix formats we can efficiently access subsets of elements at a time, but cannot efficiently lookups elements by random access, hence the "line" abstraction, allowing the sparse matrix to return subsets of elements efficiently. Individual elements are described by a COO tuple (row index, column index, value).

This abstraction allows us to read through different sparse matrix formats using the same interface. In particular we can write a DMatrix constructor that uses the same code to construct itself from a CSR matrix, CSC matrix, dense matrix, CSV, LIBSVM file, or potentially other formats. To see why this is necessary, imagine we have 5 external matrix formats and 5 internal DMatrix types where each DMatrix needs a custom constructor for each possible input. The number of constructors is 5*5=25. Using an abstraction over the input data types the number of constructors is reduced to 5, as each DMatrix is oblivious to the external data format. Adding a new input source is simply a case of implementing an adapter.

Most of the below adapters do not need more than one batch as the data originates from an in memory source. The file adapter does require batches to avoid loading the entire file in memory.

An important detail is empty row/column handling. Files loaded from disk do not provide meta information about the number of rows/columns to expect, this needs to be inferred during construction. Other sparse formats may specify a number of rows/columns, but we can encounter entirely sparse rows or columns, leading to disagreement between the inferred number and the meta-info provided. To resolve this, adapters have methods specifying the number of rows/columns expected, these methods may return zero where these values must be inferred from data. A constructed DMatrix should agree with the input source on numbers of rows/columns, appending empty rows if necessary.

An adapter can return this value for number of rows or columns indicating that this value is currently unknown and should be inferred while passing over the data.

◆ pandas_nullable_mapper

dict xgboost.data.pandas_nullable_mapper
Initial value:
1= {
2 "Int8": "int",
3 "Int16": "int",
4 "Int32": "int",
5 "Int64": "int",
6 "UInt8": "i",
7 "UInt16": "i",
8 "UInt32": "i",
9 "UInt64": "i",
10 "Float32": "float",
11 "Float64": "float",
12 "boolean": "i",
13}

◆ pandas_pyarrow_mapper

dict xgboost.data.pandas_pyarrow_mapper
Initial value:
1= {
2 "int8[pyarrow]": "i",
3 "int16[pyarrow]": "i",
4 "int32[pyarrow]": "i",
5 "int64[pyarrow]": "i",
6 "uint8[pyarrow]": "i",
7 "uint16[pyarrow]": "i",
8 "uint32[pyarrow]": "i",
9 "uint64[pyarrow]": "i",
10 "float[pyarrow]": "float",
11 "float32[pyarrow]": "float",
12 "double[pyarrow]": "float",
13 "float64[pyarrow]": "float",
14 "bool[pyarrow]": "i",
15}