|
| _check_not_tuple_of_2_elements (obj, obj_name='obj') |
|
| _float2str (value, precision=None) |
|
| plot_importance (booster, ax=None, height=0.2, xlim=None, ylim=None, title='Feature importance', xlabel='Feature importance', ylabel='Features', importance_type='split', max_num_features=None, ignore_zero=True, figsize=None, grid=True, precision=None, **kwargs) |
|
| plot_metric (booster, metric=None, dataset_names=None, ax=None, xlim=None, ylim=None, title='Metric during training', xlabel='Iterations', ylabel='auto', figsize=None, grid=True) |
|
| _to_graphviz (tree_info, show_info, feature_names, precision=None, **kwargs) |
|
| create_tree_digraph (booster, tree_index=0, show_info=None, precision=None, old_name=None, old_comment=None, old_filename=None, old_directory=None, old_format=None, old_engine=None, old_encoding=None, old_graph_attr=None, old_node_attr=None, old_edge_attr=None, old_body=None, old_strict=False, **kwargs) |
|
| plot_tree (booster, ax=None, tree_index=0, figsize=None, old_graph_attr=None, old_node_attr=None, old_edge_attr=None, show_info=None, precision=None, **kwargs) |
|
lightgbm.plotting.create_tree_digraph |
( |
|
booster, |
|
|
|
tree_index = 0 , |
|
|
|
show_info = None , |
|
|
|
precision = None , |
|
|
|
old_name = None , |
|
|
|
old_comment = None , |
|
|
|
old_filename = None , |
|
|
|
old_directory = None , |
|
|
|
old_format = None , |
|
|
|
old_engine = None , |
|
|
|
old_encoding = None , |
|
|
|
old_graph_attr = None , |
|
|
|
old_node_attr = None , |
|
|
|
old_edge_attr = None , |
|
|
|
old_body = None , |
|
|
|
old_strict = False , |
|
|
** |
kwargs |
|
) |
| |
Create a digraph representation of specified tree.
Note
----
For more information please visit
https://graphviz.readthedocs.io/en/stable/api.html#digraph.
Parameters
----------
booster : Booster or LGBMModel
Booster or LGBMModel instance to be converted.
tree_index : int, optional (default=0)
The index of a target tree to convert.
show_info : list of strings or None, optional (default=None)
What information should be shown in nodes.
Possible values of list items: 'split_gain', 'internal_value', 'internal_count', 'leaf_count'.
precision : int or None, optional (default=None)
Used to restrict the display of floating point values to a certain precision.
**kwargs
Other parameters passed to ``Digraph`` constructor.
Check https://graphviz.readthedocs.io/en/stable/api.html#digraph for the full list of supported parameters.
Returns
-------
graph : graphviz.Digraph
The digraph representation of specified tree.
lightgbm.plotting.plot_importance |
( |
|
booster, |
|
|
|
ax = None , |
|
|
|
height = 0.2 , |
|
|
|
xlim = None , |
|
|
|
ylim = None , |
|
|
|
title = 'Feature importance' , |
|
|
|
xlabel = 'Feature importance' , |
|
|
|
ylabel = 'Features' , |
|
|
|
importance_type = 'split' , |
|
|
|
max_num_features = None , |
|
|
|
ignore_zero = True , |
|
|
|
figsize = None , |
|
|
|
grid = True , |
|
|
|
precision = None , |
|
|
** |
kwargs |
|
) |
| |
Plot model's feature importances.
Parameters
----------
booster : Booster or LGBMModel
Booster or LGBMModel instance which feature importance should be plotted.
ax : matplotlib.axes.Axes or None, optional (default=None)
Target axes instance.
If None, new figure and axes will be created.
height : float, optional (default=0.2)
Bar height, passed to ``ax.barh()``.
xlim : tuple of 2 elements or None, optional (default=None)
Tuple passed to ``ax.xlim()``.
ylim : tuple of 2 elements or None, optional (default=None)
Tuple passed to ``ax.ylim()``.
title : string or None, optional (default="Feature importance")
Axes title.
If None, title is disabled.
xlabel : string or None, optional (default="Feature importance")
X-axis title label.
If None, title is disabled.
ylabel : string or None, optional (default="Features")
Y-axis title label.
If None, title is disabled.
importance_type : string, optional (default="split")
How the importance is calculated.
If "split", result contains numbers of times the feature is used in a model.
If "gain", result contains total gains of splits which use the feature.
max_num_features : int or None, optional (default=None)
Max number of top features displayed on plot.
If None or <1, all features will be displayed.
ignore_zero : bool, optional (default=True)
Whether to ignore features with zero importance.
figsize : tuple of 2 elements or None, optional (default=None)
Figure size.
grid : bool, optional (default=True)
Whether to add a grid for axes.
precision : int or None, optional (default=None)
Used to restrict the display of floating point values to a certain precision.
**kwargs
Other parameters passed to ``ax.barh()``.
Returns
-------
ax : matplotlib.axes.Axes
The plot with model's feature importances.
lightgbm.plotting.plot_metric |
( |
|
booster, |
|
|
|
metric = None , |
|
|
|
dataset_names = None , |
|
|
|
ax = None , |
|
|
|
xlim = None , |
|
|
|
ylim = None , |
|
|
|
title = 'Metric during training' , |
|
|
|
xlabel = 'Iterations' , |
|
|
|
ylabel = 'auto' , |
|
|
|
figsize = None , |
|
|
|
grid = True |
|
) |
| |
Plot one metric during training.
Parameters
----------
booster : dict or LGBMModel
Dictionary returned from ``lightgbm.train()`` or LGBMModel instance.
metric : string or None, optional (default=None)
The metric name to plot.
Only one metric supported because different metrics have various scales.
If None, first metric picked from dictionary (according to hashcode).
dataset_names : list of strings or None, optional (default=None)
List of the dataset names which are used to calculate metric to plot.
If None, all datasets are used.
ax : matplotlib.axes.Axes or None, optional (default=None)
Target axes instance.
If None, new figure and axes will be created.
xlim : tuple of 2 elements or None, optional (default=None)
Tuple passed to ``ax.xlim()``.
ylim : tuple of 2 elements or None, optional (default=None)
Tuple passed to ``ax.ylim()``.
title : string or None, optional (default="Metric during training")
Axes title.
If None, title is disabled.
xlabel : string or None, optional (default="Iterations")
X-axis title label.
If None, title is disabled.
ylabel : string or None, optional (default="auto")
Y-axis title label.
If 'auto', metric name is used.
If None, title is disabled.
figsize : tuple of 2 elements or None, optional (default=None)
Figure size.
grid : bool, optional (default=True)
Whether to add a grid for axes.
Returns
-------
ax : matplotlib.axes.Axes
The plot with metric's history over the training.
lightgbm.plotting.plot_tree |
( |
|
booster, |
|
|
|
ax = None , |
|
|
|
tree_index = 0 , |
|
|
|
figsize = None , |
|
|
|
old_graph_attr = None , |
|
|
|
old_node_attr = None , |
|
|
|
old_edge_attr = None , |
|
|
|
show_info = None , |
|
|
|
precision = None , |
|
|
** |
kwargs |
|
) |
| |
Plot specified tree.
Note
----
It is preferable to use ``create_tree_digraph()`` because of its lossless quality
and returned objects can be also rendered and displayed directly inside a Jupyter notebook.
Parameters
----------
booster : Booster or LGBMModel
Booster or LGBMModel instance to be plotted.
ax : matplotlib.axes.Axes or None, optional (default=None)
Target axes instance.
If None, new figure and axes will be created.
tree_index : int, optional (default=0)
The index of a target tree to plot.
figsize : tuple of 2 elements or None, optional (default=None)
Figure size.
show_info : list of strings or None, optional (default=None)
What information should be shown in nodes.
Possible values of list items: 'split_gain', 'internal_value', 'internal_count', 'leaf_count'.
precision : int or None, optional (default=None)
Used to restrict the display of floating point values to a certain precision.
**kwargs
Other parameters passed to ``Digraph`` constructor.
Check https://graphviz.readthedocs.io/en/stable/api.html#digraph for the full list of supported parameters.
Returns
-------
ax : matplotlib.axes.Axes
The plot with single tree.