Medial Code Documentation
|
Data Structures | |
class | EarlyStopException |
Functions | |
_format_eval_result (value, show_stdv=True) | |
print_evaluation (period=1, show_stdv=True) | |
record_evaluation (eval_result) | |
reset_parameter (**kwargs) | |
early_stopping (stopping_rounds, verbose=True) | |
Variables | |
CallbackEnv | |
Callbacks library.
|
protected |
Format metric string.
lightgbm.callback.early_stopping | ( | stopping_rounds, | |
verbose = True |
|||
) |
Create a callback that activates early stopping. Note ---- Activates early stopping. The model will train until the validation score stops improving. Validation score needs to improve at least every ``early_stopping_rounds`` round(s) to continue training. Requires at least one validation data and one metric. If there's more than one, will check all of them. But the training data is ignored anyway. Parameters ---------- stopping_rounds : int The possible number of rounds without the trend occurrence. verbose : bool, optional (default=True) Whether to print message with early stopping information. Returns ------- callback : function The callback that activates early stopping.
lightgbm.callback.print_evaluation | ( | period = 1 , |
|
show_stdv = True |
|||
) |
Create a callback that prints the evaluation results. Parameters ---------- period : int, optional (default=1) The period to print the evaluation results. show_stdv : bool, optional (default=True) Whether to show stdv (if provided). Returns ------- callback : function The callback that prints the evaluation results every ``period`` iteration(s).
lightgbm.callback.record_evaluation | ( | eval_result | ) |
Create a callback that records the evaluation history into ``eval_result``. Parameters ---------- eval_result : dict A dictionary to store the evaluation results. Returns ------- callback : function The callback that records the evaluation history into the passed dictionary.
lightgbm.callback.reset_parameter | ( | ** | kwargs | ) |
Create a callback that resets the parameter after the first iteration. Note ---- The initial parameter will still take in-effect on first iteration. Parameters ---------- **kwargs : value should be list or function List of parameters for each boosting round or a customized function that calculates the parameter in terms of current number of round (e.g. yields learning rate decay). If list lst, parameter = lst[current_round]. If function func, parameter = func(current_round). Returns ------- callback : function The callback that resets the parameter after the first iteration.
lightgbm.callback.CallbackEnv |