Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions
xgboost::tree::QuantileHistMaker Class Reference

construct a tree using quantized feature values More...

Inheritance diagram for xgboost::tree::QuantileHistMaker:
xgboost::TreeUpdater xgboost::Configurable

Public Member Functions

 QuantileHistMaker (Context const *ctx, ObjInfo const *task)
 
void Configure (Args const &args) override
 Initialize the updater with given arguments.
 
void LoadConfig (Json const &in) override
 Load configuration from JSON object.
 
void SaveConfig (Json *p_out) const override
 Save configuration to JSON object.
 
char const * Name () const override
 
void Update (TrainParam const *param, HostDeviceVector< GradientPair > *gpair, DMatrix *p_fmat, common::Span< HostDeviceVector< bst_node_t > > out_position, const std::vector< RegTree * > &trees) override
 perform update to the tree models
 
bool UpdatePredictionCache (const DMatrix *data, linalg::MatrixView< float > out_preds) override
 determines whether updater has enough knowledge about a given dataset to quickly update prediction cache its training data and performs the update if possible.
 
bool HasNodePosition () const override
 Wether the out_position in Update is valid. This determines whether adaptive tree can be used.
 
- Public Member Functions inherited from xgboost::TreeUpdater
 TreeUpdater (const Context *ctx)
 
 ~TreeUpdater () override=default
 virtual destructor
 
virtual bool CanModifyTree () const
 Whether this updater can be used for updating existing trees.
 

Additional Inherited Members

- Static Public Member Functions inherited from xgboost::TreeUpdater
static TreeUpdaterCreate (const std::string &name, Context const *ctx, ObjInfo const *task)
 Create a tree updater given name.
 
- Protected Attributes inherited from xgboost::TreeUpdater
Context const * ctx_ = nullptr
 

Detailed Description

construct a tree using quantized feature values

Member Function Documentation

◆ Configure()

void xgboost::tree::QuantileHistMaker::Configure ( Args const &  args)
inlineoverridevirtual

Initialize the updater with given arguments.

Parameters
argsarguments to the objective function.

Implements xgboost::TreeUpdater.

◆ HasNodePosition()

bool xgboost::tree::QuantileHistMaker::HasNodePosition ( ) const
inlineoverridevirtual

Wether the out_position in Update is valid. This determines whether adaptive tree can be used.

Reimplemented from xgboost::TreeUpdater.

◆ LoadConfig()

void xgboost::tree::QuantileHistMaker::LoadConfig ( Json const &  in)
inlineoverridevirtual

Load configuration from JSON object.

Parameters
inJSON object containing the configuration

Implements xgboost::Configurable.

◆ Name()

char const * xgboost::tree::QuantileHistMaker::Name ( ) const
inlineoverridevirtual

Implements xgboost::TreeUpdater.

◆ SaveConfig()

void xgboost::tree::QuantileHistMaker::SaveConfig ( Json out) const
inlineoverridevirtual

Save configuration to JSON object.

Parameters
outpointer to output JSON object

Implements xgboost::Configurable.

◆ Update()

void xgboost::tree::QuantileHistMaker::Update ( TrainParam const *  param,
HostDeviceVector< GradientPair > *  gpair,
DMatrix data,
common::Span< HostDeviceVector< bst_node_t > >  out_position,
const std::vector< RegTree * > &  out_trees 
)
inlineoverridevirtual

perform update to the tree models

Parameters
paramHyper-parameter for constructing trees.
gpairthe gradient pair statistics of the data
dataThe data matrix passed to the updater.
out_positionThe leaf index for each row. The index is negated if that row is removed during sampling. So the 3th node is ~3.
out_treesreferences the trees to be updated, updater will change the content of trees note: all the trees in the vector are updated, with the same statistics, but maybe different random seeds, usually one tree is passed in at a time, there can be multiple trees when we train random forest style model

Implements xgboost::TreeUpdater.

◆ UpdatePredictionCache()

bool xgboost::tree::QuantileHistMaker::UpdatePredictionCache ( const DMatrix ,
linalg::MatrixView< float >   
)
inlineoverridevirtual

determines whether updater has enough knowledge about a given dataset to quickly update prediction cache its training data and performs the update if possible.

Parameters
datadata matrix
out_predsprediction cache to be updated
Returns
boolean indicating whether updater has capability to update the prediction cache. If true, the prediction cache will have been updated by the time this function returns.

Reimplemented from xgboost::TreeUpdater.


The documentation for this class was generated from the following file: