Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Data Fields | Protected Member Functions | Protected Attributes
xgboost.callback.EarlyStopping Class Reference
Inheritance diagram for xgboost.callback.EarlyStopping:
xgboost.callback.TrainingCallback

Public Member Functions

None __init__ (self, int rounds, Optional[str] metric_name=None, Optional[str] data_name=None, Optional[bool] maximize=None, Optional[bool] save_best=False, float min_delta=0.0)
 
_Model before_training (self, _Model model)
 
bool after_iteration (self, _Model model, int epoch, TrainingCallback.EvalsLog evals_log)
 
_Model after_training (self, _Model model)
 
- Public Member Functions inherited from xgboost.callback.TrainingCallback
bool before_iteration (self, _Model model, int epoch, EvalsLog evals_log)
 

Data Fields

 data
 
 metric_name
 
 rounds
 
 save_best
 
 maximize
 
 starting_round
 
 current_rounds
 

Protected Member Functions

bool _update_rounds (self, _Score score, str name, str metric, _Model model, int epoch)
 

Protected Attributes

 _min_delta
 

Additional Inherited Members

- Static Public Attributes inherited from xgboost.callback.TrainingCallback
 EvalsLog = Dict[str, Dict[str, _ScoreList]]
 

Detailed Description

Callback function for early stopping

.. versionadded:: 1.3.0

Parameters
----------
rounds :
    Early stopping rounds.
metric_name :
    Name of metric that is used for early stopping.
data_name :
    Name of dataset that is used for early stopping.
maximize :
    Whether to maximize evaluation metric.  None means auto (discouraged).
save_best :
    Whether training should return the best model or the last model.
min_delta :

    .. versionadded:: 1.5.0

    Minimum absolute change in score to be qualified as an improvement.

Examples
--------

.. code-block:: python

    es = xgboost.callback.EarlyStopping(
        rounds=2,
        min_delta=1e-3,
        save_best=True,
        maximize=False,
        data_name="validation_0",
        metric_name="mlogloss",
    )
    clf = xgboost.XGBClassifier(tree_method="hist", device="cuda", callbacks=[es])

    X, y = load_digits(return_X_y=True)
    clf.fit(X, y, eval_set=[(X, y)])

Constructor & Destructor Documentation

◆ __init__()

None xgboost.callback.EarlyStopping.__init__ (   self,
int  rounds,
Optional[str]   metric_name = None,
Optional[str]   data_name = None,
Optional[bool]   maximize = None,
Optional[bool]   save_best = False,
float   min_delta = 0.0 
)

Reimplemented from xgboost.callback.TrainingCallback.

Member Function Documentation

◆ after_iteration()

bool xgboost.callback.EarlyStopping.after_iteration (   self,
_Model  model,
int  epoch,
TrainingCallback.EvalsLog   evals_log 
)
Run after each iteration.  Return True when training should stop.

Reimplemented from xgboost.callback.TrainingCallback.

◆ after_training()

_Model xgboost.callback.EarlyStopping.after_training (   self,
_Model  model 
)
Run after training is finished.

Reimplemented from xgboost.callback.TrainingCallback.

◆ before_training()

_Model xgboost.callback.EarlyStopping.before_training (   self,
_Model  model 
)
Run before training starts.

Reimplemented from xgboost.callback.TrainingCallback.


The documentation for this class was generated from the following file: