|
| LearnerIO (std::vector< std::shared_ptr< DMatrix > > cache) |
|
void | LoadModel (Json const &in) override |
| load the model from a JSON object
|
|
void | SaveModel (Json *p_out) const override |
| saves the model config to a JSON object
|
|
void | LoadModel (dmlc::Stream *fi) override |
|
void | SaveModel (dmlc::Stream *fo) const override |
|
void | Save (dmlc::Stream *fo) const override |
| saves the model to a stream
|
|
void | Load (dmlc::Stream *fi) override |
| load the model from a stream
|
|
| LearnerConfiguration (std::vector< std::shared_ptr< DMatrix > > cache) |
|
void | Configure () override |
| Configure Learner based on set parameters.
|
|
void | CheckModelInitialized () const |
|
void | LoadConfig (Json const &in) override |
| Load configuration from JSON object.
|
|
void | SaveConfig (Json *p_out) const override |
| Save configuration to JSON object.
|
|
void | SetParam (const std::string &key, const std::string &value) override |
| Set parameter for booster.
|
|
void | SetParams (std::vector< std::pair< std::string, std::string > > const &args) override |
| Set multiple parameters at once.
|
|
uint32_t | GetNumFeature () const override |
| Get the number of features of the booster.
|
|
void | SetAttr (const std::string &key, const std::string &value) override |
| Set additional attribute to the Booster.
|
|
bool | GetAttr (const std::string &key, std::string *out) const override |
| Get attribute from the booster. The property will be saved along the booster.
|
|
bool | DelAttr (const std::string &key) override |
| Delete an attribute from the booster.
|
|
void | SetFeatureNames (std::vector< std::string > const &fn) override |
| Set the feature names for current booster.
|
|
void | GetFeatureNames (std::vector< std::string > *fn) const override |
| Get the feature names for current booster.
|
|
void | SetFeatureTypes (std::vector< std::string > const &ft) override |
| Set the feature types for current booster.
|
|
void | GetFeatureTypes (std::vector< std::string > *p_ft) const override |
| Get the feature types for current booster.
|
|
std::vector< std::string > | GetAttrNames () const override |
| Get a vector of attribute names from the booster.
|
|
const std::map< std::string, std::string > & | GetConfigurationArguments () const override |
| Get configuration arguments currently stored by the learner.
|
|
Context const * | Ctx () const override |
| Return the context object of this Booster.
|
|
| ~Learner () override |
| virtual destructor
|
|
virtual void | UpdateOneIter (int iter, std::shared_ptr< DMatrix > train)=0 |
| update the model for one iteration With the specified objective function.
|
|
virtual void | BoostOneIter (int iter, std::shared_ptr< DMatrix > train, HostDeviceVector< GradientPair > *in_gpair)=0 |
| Do customized gradient boosting with in_gpair. in_gair can be mutated after this call.
|
|
virtual std::string | EvalOneIter (int iter, const std::vector< std::shared_ptr< DMatrix > > &data_sets, const std::vector< std::string > &data_names)=0 |
| evaluate the model for specific iteration using the configured metrics.
|
|
virtual void | Predict (std::shared_ptr< DMatrix > data, bool output_margin, HostDeviceVector< bst_float > *out_preds, bst_layer_t layer_begin, bst_layer_t layer_end, bool training=false, bool pred_leaf=false, bool pred_contribs=false, bool approx_contribs=false, bool pred_interactions=false)=0 |
| get prediction given the model.
|
|
virtual void | InplacePredict (std::shared_ptr< DMatrix > p_m, PredictionType type, float missing, HostDeviceVector< float > **out_preds, bst_layer_t layer_begin, bst_layer_t layer_end)=0 |
| Inplace prediction.
|
|
virtual void | CalcFeatureScore (std::string const &importance_type, common::Span< int32_t const > trees, std::vector< bst_feature_t > *features, std::vector< float > *scores)=0 |
| Calculate feature score. See doc in C API for outputs.
|
|
virtual int32_t | BoostedRounds () const =0 |
|
virtual std::uint32_t | Groups () const =0 |
| Get the number of output groups from the model.
|
|
virtual Learner * | Slice (bst_layer_t begin, bst_layer_t end, bst_layer_t step, bool *out_of_bound)=0 |
| Slice the model.
|
|
virtual std::vector< std::string > | DumpModel (const FeatureMap &fmap, bool with_stats, std::string format)=0 |
| dump the model in the requested format
|
|
virtual XGBAPIThreadLocalEntry & | GetThreadLocal () const =0 |
|
virtual | ~Serializable () |
| virtual destructor
|
|
|
static Learner * | Create (const std::vector< std::shared_ptr< DMatrix > > &cache_data) |
| Create a new instance of learner.
|
|
void | ConfigureModelParamWithoutBaseScore () |
|
void | InitBaseScore (DMatrix const *p_fmat) |
| Calculate the base_score based on input data.
|
|
std::atomic< bool > | need_configuration_ |
|
std::map< std::string, std::string > | cfg_ |
|
std::map< std::string, std::string > | attributes_ |
|
std::vector< std::string > | feature_names_ |
|
std::vector< std::string > | feature_types_ |
|
common::Monitor | monitor_ |
|
LearnerModelParamLegacy | mparam_ |
|
LearnerModelParam | learner_model_param_ |
|
LearnerTrainParam | tparam_ |
|
PredictionContainer | prediction_container_ |
|
std::vector< std::string > | metric_names_ |
|
std::unique_ptr< ObjFunction > | obj_ |
| objective function
|
|
std::unique_ptr< GradientBooster > | gbm_ |
| The gradient booster used by the model.
|
|
std::vector< std::unique_ptr< Metric > > | metrics_ |
| The evaluation metrics used to evaluate the model.
|
|
Context | ctx_ |
| Training parameter.
|
|
static std::string const | kEvalMetric {"eval_metric"} |
|