Medial Code Documentation
Loading...
Searching...
No Matches
Public Member Functions | Data Fields
micNode Class Reference
Inheritance diagram for micNode:
SerializableObject

Public Member Functions

int init_wgts_rand (float min_range, float max_range)
 
int init_wgts_rand_normal (float mean, float std)
 
int fill_input_node (int *perm, int len, MedMat< float > &x_mat, int last_is_bias_flag)
 
int fill_output_node (int *perm, int len, MedMat< float > &y_mat, vector< float > &sample_weights)
 
int get_input_batch (int do_grad_flag)
 
int forward_batch (int do_grad_flag)
 
int forward_batch_leaky_relu (int do_grad_flag)
 
int forward_batch_normalization (int do_grad_flag)
 
int forward_batch_softmax (int do_grad_flag)
 
int forward_batch_regression (int do_grad_flag)
 
void forward_batch (const vector< MedMat< float > > &nodes_outputs, MedMat< float > &out) const
 
void get_input_batch (const vector< MedMat< float > > &nodes_out, MedMat< float > &in) const
 
void forward_batch_leaky_relu (const MedMat< float > &in, MedMat< float > &out) const
 
void forward_batch_normalization (const MedMat< float > &in, MedMat< float > &out) const
 
void forward_batch_softmax (const MedMat< float > &in, MedMat< float > &out) const
 
void forward_batch_regression (const MedMat< float > &in, MedMat< float > &out) const
 
int back_propagete_from (micNode *next)
 
int get_backprop_delta ()
 
int weights_gd_step ()
 
int weights_normalization_step ()
 
void print (const string &prefix, int i_state, int i_in)
 
- Public Member Functions inherited from SerializableObject
virtual int version () const
 Relevant for serializations.
 
virtual string my_class_name () const
 For better handling of serializations it is highly recommended that each SerializableObject inheriting class will implement the next method.
 
virtual void serialized_fields_name (vector< string > &field_names) const
 The names of the serialized fields.
 
virtual void * new_polymorphic (string derived_name)
 for polymorphic classes that want to be able to serialize/deserialize a pointer * to the derived class given its type one needs to implement this function to return a new to the derived class given its type (as in my_type)
 
virtual void pre_serialization ()
 
virtual void post_deserialization ()
 
virtual size_t get_size ()
 Gets bytes sizes for serializations.
 
virtual size_t serialize (unsigned char *blob)
 Serialiazing object to blob memory. return number ob bytes wrote to memory.
 
virtual size_t deserialize (unsigned char *blob)
 Deserialiazing blob to object. returns number of bytes read.
 
size_t serialize_vec (vector< unsigned char > &blob)
 
size_t deserialize_vec (vector< unsigned char > &blob)
 
virtual size_t serialize (vector< unsigned char > &blob)
 
virtual size_t deserialize (vector< unsigned char > &blob)
 
virtual int read_from_file (const string &fname)
 read and deserialize model
 
virtual int write_to_file (const string &fname)
 serialize model and write to file
 
virtual int read_from_file_unsafe (const string &fname)
 read and deserialize model without checking version number - unsafe read
 
int init_from_string (string init_string)
 Init from string.
 
int init_params_from_file (string init_file)
 
int init_param_from_file (string file_str, string &param)
 
virtual int init (map< string, string > &map)
 Virtual to init object from parsed fields.
 
int update_from_string (const string &init_string)
 
virtual int update (map< string, string > &map)
 Virtual to update object from parsed fields.
 
virtual string object_json () const
 

Data Fields

int id
 
string type
 
string subtype
 
string name
 
string loss
 
int n_in
 
int k_out
 
MedMat< float > wgt
 
vector< float > dropout_in
 
vector< float > dropout_out
 
MedMat< int > sparse_bit
 
InputRules ir
 
vector< int > forward_nodes
 
int is_terminal
 
MedMat< float > lr_params
 
MedMat< float > lambda
 
MedMat< float > learn_rates
 
float momentum
 
float rate_factor
 
float max_wgt_norm
 
float min_wgt_norm
 
float dropout_prob_in
 
float dropout_prob_out
 
float sparse_zero_prob
 
MedMat< float > batch_in
 
MedMat< float > batch_out
 
MedMat< float > grad_w
 
MedMat< float > grad_s
 
MedMat< float > delta
 
MedMat< float > prev_grad_w
 
vector< float > b_mean
 
vector< float > b_var
 
vector< float > alpha
 
vector< float > beta
 
float normalization_update_factor
 
vector< double > curr_mean
 
vector< double > curr_var
 
int n_categ
 
int n_per_categ
 
MedMat< float > full_probs
 
int data_node
 
micNodedata_node_p
 
micNetmy_net
 
MedMat< float > y
 
vector< float > sweights
 
int update_weights_flag
 
int only_forward_flag
 
std::default_random_engine gen
 

The documentation for this class was generated from the following files: