|
| fit (self, X, y, sample_weight=None, init_score=None, group=None, eval_set=None, eval_names=None, eval_sample_weight=None, eval_init_score=None, eval_group=None, eval_metric=None, eval_at=[1], early_stopping_rounds=None, verbose=True, feature_name='auto', categorical_feature='auto', callbacks=None) |
|
| __init__ (self, boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=100, subsample_for_bin=200000, objective=None, class_weight=None, min_split_gain=0., min_child_weight=1e-3, min_child_samples=20, subsample=1., subsample_freq=0, colsample_bytree=1., reg_alpha=0., reg_lambda=0., random_state=None, n_jobs=-1, silent=True, importance_type='split', **kwargs) |
|
| get_params (self, deep=True) |
|
| set_params (self, **params) |
|
| predict (self, X, raw_score=False, num_iteration=None, pred_leaf=False, pred_contrib=False, **kwargs) |
|
| n_features_ (self) |
|
| best_score_ (self) |
|
| best_iteration_ (self) |
|
| objective_ (self) |
|
| booster_ (self) |
|
| evals_result_ (self) |
|
| feature_importances_ (self) |
|
|
| _eval_at |
|
| _Booster |
|
| _evals_result |
|
| _best_score |
|
| _best_iteration |
|
| _other_params |
|
| _objective |
|
| _n_features |
|
| _classes |
|
| _n_classes |
|
| _fobj |
|
|
| _base_doc = LGBMModel.fit.__doc__ |
|
| _before_early_stop |
|
| _early_stop |
|
| _after_early_stop |
|
|
| boosting_type |
|
| objective |
|
| num_leaves |
|
| max_depth |
|
| learning_rate |
|
| n_estimators |
|
| subsample_for_bin |
|
| min_split_gain |
|
| min_child_weight |
|
| min_child_samples |
|
| subsample |
|
| subsample_freq |
|
| colsample_bytree |
|
| reg_alpha |
|
| reg_lambda |
|
| random_state |
|
| n_jobs |
|
| silent |
|
| importance_type |
|
| class_weight |
|
◆ fit()
lightgbm.sklearn.LGBMRanker.fit |
( |
|
self, |
|
|
|
X, |
|
|
|
y, |
|
|
|
sample_weight = None , |
|
|
|
init_score = None , |
|
|
|
group = None , |
|
|
|
eval_set = None , |
|
|
|
eval_names = None , |
|
|
|
eval_sample_weight = None , |
|
|
|
eval_init_score = None , |
|
|
|
eval_group = None , |
|
|
|
eval_metric = None , |
|
|
|
eval_at = [1] , |
|
|
|
early_stopping_rounds = None , |
|
|
|
verbose = True , |
|
|
|
feature_name = 'auto' , |
|
|
|
categorical_feature = 'auto' , |
|
|
|
callbacks = None |
|
) |
| |
The documentation for this class was generated from the following file:
- External/LightGBM_2.2.3/LightGBM-2.2.3/python-package/lightgbm/sklearn.py